TO TOP

Prof. em. Dr.-Ing. Dr.-Ing. e. h. Wolfgang Wagner

 

List of publications

 1968 - 1972

1.  Wagner, W. Thermodynamische Eigenschaften von Trifluormethan (R 23). Kältetechnik - Klimatisierung 20 (1968), 238-240.

2.  Wagner, W. Ein pneumatisch gesteuertes Entnahmeventil für tiefe Temperaturen und hohe Drücke. Kältetechnik - Klimatisierung 22 (1970), 114-115.

3.  Wagner, W. Ein elektrisch angetriebenes Pump- und Rührwerk für den Einsatz bei tiefen Temperaturen und hohen Drücken. Kältetechnik - Klimatisierung 22 (1970), 342-344.

4.  Wagner, W. Eine thermische Zustandsgleichung zur Berechnung der Phasengleichgewichte flüssig-gasförmig für Stickstoff. Dissertation Technische Universität Braunschweig 1970.

5.  Wagner, W. Eine Versuchsanlage zur Bestimmung von Phasengleichgewichten für Gemische fluider Substanzen bei tiefen Temperaturen. Kältetechnik - Klimatisierung 24 (1972), 121-129.

6.  Wagner, W. A method to establish equations of state exactly representing all saturated state variables applied to nitrogen. Cryogenics 12 (1972), 214-221. https://doi.org/10.1016/0011-2275(72)90089-6

     1973 - 1975

7.  Wagner, W., Janssen, H. A new vacuum jacket transfer tube for the connection of several refrigerant storage vessels with an evaporation cryostat. Cryogenics 13 (1973), 364-366. https://doi.org/10.1016/0011-2275(73)90064-7

8.  Wagner, W. New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations. Cryogenics 13 (1973), 470-482. https://doi.org/10.1016/0011-2275(73)90003-9

9.  Wagner, W. Method for rational establishment of thermodynamic equations shown by the example of the vapour pressure curve for pure fluids. Bull. Inst. Int. Froid - Int. Inst. Refrigeration (I.I.F. - I.I.R.), Annexe 1973, (4), 65-74.

10.  Wagner, W. Eine mathematisch statistische Methode zum Aufstellen thermodyna­mischer Gleichungen - gezeigt am Beispiel der Dampfdruckkurve reiner fluider Stoffe. Fortschr.-Ber. VDI-Z., Reihe 3, Nr. 39, VDI-Verlag, Düsseldorf, 1974.

11.  Wagner, W., Pollak, R. A simple, but very accurate vapor pressure equation for water. In: Proc. 8th International Conference on the Properties of Water and Steam, Giens 1974, Editions Européennes Thermique et Industries, Paris, Vol. 2, (1974), 787-796.

12.  Wagner, W. Zur Strategie der Messung und Korrelation von Zustandsgrößen. Brennstoff-Wärme-Kraft 27 (1975), 290-297.

       1976 - 1979

13.  Wagner, W., Ewers, J., Pentermann, W. New vapour-pressure measurements and a new rational vapour-pressure equation for oxygen. J. Chem. Thermodynamics 8 (1976), 1049-1060. https://doi.org/10.1016/0021-9614(76)90136-1

14.  Wagner, W. A new correlation method for thermodynamic data applied to the vapour-pressure curve of argon, nitrogen and water. Report PC/T 15, IUPAC Thermodynamic Tables Project Centre, Imperial College, London, 1977.

15.  Kleinrahm, R., Wagner, W. Untersuchung von Dichtemeßverfahren und Konzipierung einer Anlage zur genauen Messung der Siede- und Taudichte. Chemie Ingenieur Technik. 50 (1978), 805.

16.  Pentermann, W., Wagner, W. New pressure-density-temperature measurements and new rational equations for the saturated liquid and vapour densities of oxygen. J. Chem. Thermodynamics 10 (1978), 1161-1172. https://doi.org/10.1016/0021-9614(78)90033-2

17.  Straub, J., Lange, R., Wagner, W. Untersuchungen kritischer Phänomene unter reduzierter Schwerkraft. In: Spacelab-Nutzung Werkstofforschung und Verfahrenstechnik, DGLR-Bericht 79-01 (1979), 185-192.

       1980 - 1982

18.  Wagner, W., Kratz, H.-G., Pentermann, W. Aufbau einer Meßapparatur zur Druck-, Dichte-, Temperaturmessung im kritischen Gebiet reiner fluider Stoffe im SPACELAB. In: Spacelab-Nutzung Werkstoffforschung und Verfahrenstechnik im Weltraum, DGLR-Bericht 80-01 (1980), 29-37.

19.  Wagner, W., Meier, T. Automatisierung eines Gebläseprüfstandes. Bosch Techn. Berichte 7 (1981), 95-104.

20.  Wagner, W., Kratz, H.-G., Pentermann, W. Konzipierung einer Meßapparatur zur Druck-, Dichte-, Temperatur-Messung des kritischen Gebietes reiner fluider Stoffe im SPACELAB. Forschungsbericht BMFT-FB-W 81-026 des Bundesministeriums für Forschung und Techno logie, 1981.

21.  Kratz, H.-G., Wagner, W. Meßapparatur zur Druck-, Dichte-, Temperatur-Messung im kritischen Gebiet reiner fluider Stoffe. In: Spacelab-Nutzung Werkstofforschung und Verfahrenstechnik im Weltraum, DGLR-Bericht 81-01 (1981), 151-157.

22.  Ewers, J., Wagner, W. Eine Methode zur Optimierung der Struktur von Zustandsgleichun­gen und ihre Anwendung zur Aufstellung einer Fundamentalgleichung für Sauerstoff. VDI-Forsch.-Heft 609 (1982), 27-34.

23.  Wagner, W., Ewers, J., Schmidt, R. An equation for the ideal-gas heat capacity of molecular oxygen for temperatures from 30 K to 3000 K. Ber. Bunsenges. Phys. Chem. 86 (1982), 538-540. https://doi.org/10.1002/bbpc.19820860613

24.  Ewers, J., Wagner, W. A method for optimizing the structure of equations of state and its application to an equation of state for oxygen. In: Proceedings of the 8th Symposium on Thermophysical Properties, edited by J. V. Sengers, Vol. I, American Society of Mechanical Engineers, New York, (1982), 78-87.

       1983 - 185

25.  Wagner, W., Kratz, H.-G. Verhalten thermischer Zustandsgrößen im kritischen Gebiet reiner fluider Stoffe - Aufbau einer Meßapparatur für Druck, Dichte, Temperatur-Messungen im kritischen Gebiet. In: Bericht zum 18. Bunsenkolloquium "Kritische Erscheinungen, Phasen­bildung und Transportvorgänge unter verminderter Schwerkraft", Hrsg. J. Richter, Institut für Physikalische Chemie, RWTH Aachen, (1983), 34-52.

26.  Wagner, W., Ewers, J., Schmidt, R. An equation of state for oxygen vapour - second and third virial coefficients. Cryogenics 24 (1984), 37-43. https://doi.org/10.1016/0011-2275(84)90056-0

27.  Kleinrahm, R., Wagner, W. Entwicklung und Aufbau einer Dichtemeßanlage zur Messung der Siede- und Taudichten reiner fluider Stoffe auf der gesamten Phasengrenzkurve. Fortschr.-Ber. VDI-Z., Reihe 3, Nr. 92, VDI-Verlag, Düsseldorf, 1984.

28.  Schmidt, R., Wagner, W. A new form of the equation of state for pure substances and its application to oxygen. Fluid Phase Equilibria 19 (1985), 175-200. https://doi.org/10.1016/0378-3812(85)87016-3

29.  Kleinrahm, R., Wagner, W. Entwicklung und Aufbau einer Dichtemeßanlage zur Messung der Siede- und Taudichten reiner fluider Stoffe auf der gesamten Phasengrenzkurve. Chemie Ingenieur Technik 57 (1985), 520-522. https://doi.org/10.1002/cite.330570608

30.  Kratz, H.-G., Wagner, W. Meßapparatur zur Druck-, Dichte-, Temperatur (p,v,T)-Messung im kritischen Gebiet reiner fluider Stoffe. Forschungsbericht BMFT-FB-W 85-006 des Bun­desministeriums für Forschung und Technologie, Fachinformationszentrum Karlsruhe, 1985.

       1986 - 1987

31.  Wagner, W., Saul, A. Correlation equations for the vapour pressure and for the orthobaric densities of water substance. Proceedings of the 10th International Conference on the Properties of Steam, edited by V. V. Sychev and A. A. Aleksandrov, MIR Moscow, (1986), 199-209.

32.  Kleinrahm, R., Wagner, W. Measurement and correlation of the equilibrium liquid and vapour densities and the vapour presssure along the coexistence curve of methane. J. Chem. Thermodynamics 18 (1986), 739-760. https://doi.org/10.1016/0021-9614(86)90108-4

33.  Kleinrahm, R., Duschek, W., Wagner, W. (Pressure, density, temperature) measurements in the critical region of methane. J. Chem. Thermodynamics 18 (1986), 1103-1114. https://doi.org/10.1016/0021-9614(86)90158-8

34.  Wagner, W., de Reuck, M. International thermodynamic tables of the fluid state – 9, oxygen. Blackwell Scientific Publications, Oxford, 1987.

35.  Saul, A., Wagner, W. International equations for the saturation properties of ordinary water substance. J. Phys. Chem. Ref. Data 16 (1987), 893-901. https://doi.org/10.1063/1.555787

       1988 - 1989

36.  Kleinrahm, R., Duschek, W., Jaeschke, M., Wagner, W. Messung und Korrelation der Gas­dichte von Methan im Temperaturbereich von 0 oC bis 50 oC und Drücken bis 80 bar. gwf-Gas/Erdgas, 129 (1988), 77-82.

37.  Kleinrahm, R., Duschek, W., Jaeschke, M., Wagner, W. Eine genaue Korrelations­gleichung zur Berechnung der Gasdichte von Methan im Temperaturbereich von 0 oC bis 50 oC und Drücken bis 80 bar. Chemie Ingenieur Technik. 60 (1988), 120-122. https://doi.org/10.1002/cite.330600210

38.  Kleinrahm, R., Duschek, W., Wagner, W., Jaeschke, M. Measurement and correlation of the (pressure, density, temperature) relation of methane in the temperature range from 273.15 K to 323.15 K and pressures up to 8 MPa. J. Chem. Thermodynamics 20 (1988), 621-631. https://doi.org/10.1016/0021-9614(88)90092-4

39.  Duschek, W., Kleinrahm, R., Wagner, W., Jaeschke, M. Measurement and correlation of the (pressure, density, temperature) relation of nitrogen at temperatures from 273.15 K to 323.15 K and pressures up to 8 MPa. J. Chem. Thermodynamics 20 (1988), 1069-1077. https://doi.org/10.1016/0021-9614(88)90113-9

40.  Wagner, W., Kurzeja, N., Pieperbeck, B. Eine Apparatur zur Messung des (pρ, T)-Verhal­tens von Schwefelhexafluorid im kritischen Gebiet. In: BMFT-DFVLR-Statusseminar "Forschung unter Schwerelosigkeit", Friedrichshafen, (1988), 177-184.

41.  Sato, H., Uematsu, M., Watanabe, K., Saul, A., Wagner, W. New international skeleton tables for the thermodynamic properties of ordinary water substance. J. Phys. Chem. Ref. Data 17 (1988), 1439-1540. https://doi.org/10.1063/1.555812

42.  Setzmann, U., Wagner, W. A new method for optimizing the structure of thermodynamic correlation equations. Int. J. Thermophysics 10 (1989), 1103-1126. https://doi.org/10.1007/BF00500566

43.  Duschek, W., Kleinrahm, R., Wagner, W., Jaeschke, M. Measurements of the (pressure, density, temperature) relation of Ekofisk natural gas in the temperature range from 273.15 K to 323.15 K and pressures up to 8 MPa. J. Chem. Thermodynamics 21 (1989), 1069-1078. https://doi.org/10.1016/0021-9614(89)90093-1

44.  Saul, A., Wagner, W. A fundamental equation for water covering the range from the melting line to 1273 K at pressures up to 25000 MPa. J. Phys. Chem. Ref. Data 18 (1989), 1537-1564. https://doi.org/10.1063/1.555836

       1990

45.  Wagner, W., Kleinrahm, R., Pieperbeck, N., Jaeschke, M. A new apparatus for high-precision gas-density measurements to calibrate gas-density transducers. Proceedings of the 1989 International Gas Research Conference, Tokyo, November 6-9, 1989, Government Institutes Inc., Rockville, U.S.A., (1990), 462-471.

46.  Duschek, W., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide. I. The homogeneous gas and liquid region in the temperature range from 217 K to 340 K at pressures up to 9 MPa. J. Chem. Thermodynamics 22 (1990), 827-840. https://doi.org/10.1016/0021-9614(90)90172-M

47.  Duschek, W., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide. II. Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexistence curve. J. Chem. Thermodynamics 22 (1990), 841-864. https://doi.org/10.1016/0021-9614(90)90173-N

48.  Wagner, W., Saul, A. Equations for the pressures along the melting curve and sublimation curve of ordinary water. Proceedings of the 11th International Conference on the Properties of Water and Steam, eds. Pichal, M and O. Sifner, O, Hemisphere Publishing Corporation, New York, 1990, p. 39.

49.  Pieperbeck, N., Kleinrahm, R., Wagner, W. Entwicklung und Aufbau einer Präzisions-Gasdichtemeßanlage zur Bestimmung der Dichte von Erdgasen. Fortschr.-Ber. VDI, Reihe 3, Nr. 228, VDI-Verlag, Düsseldorf, 1990.

50.  Laesecke, A., Krauss, R., Stephan, K., Wagner, W. The transport properties of fluid oxygen. J. Phys. Chem. Ref. Data 19 (1990), 1089-1122. https://doi.org/10.1063/1.555863

       1991

51.  Pieperbeck, N., Kleinrahm, R., Wagner, W., Jaeschke, M. Results of (pressure, density, tem­perature) measurements on methane and on nitrogen in the temperature range from 273.15 K to 323.15 K at pressures up to 12 MPa using a new apparatus for accurate gas-density measurements. J. Chem. Thermodynamics 23 (1991), 175-194. https://doi.org/10.1016/S0021-9614(05)80295-2

52.  Wagner, W., Kurzeja, N., Pieperbeck, B. Das thermische Verhalten reiner fluider Stoffe im kritischen Gebiet - Erfahrungen aus pρT-Messungen von SF6 mit einer Mehrzellenappara­tur. In: DARA Symposium 1991, Statusseminar "Forschung unter Weltraumbedingungen“, Hrsg. H. Binnenbruck, TH Aachen (1991), 14-32.

53.  Stewart, R. B., Jacobsen, R. T, Wagner, W. Thermodynamic properties of oxygen from the triple point to 300 K at pressures to 80 MPa. J. Phys. Chem. Ref. Data 20 (1991), 917-1021. https://doi.org/10.1063/1.555897

54.  Sato, H., Watanabe, K., Levelt Sengers, J. M. H., Gallagher, J. S., Hill, P. G., Straub, J., Wagner, W. Sixteen thousand evaluated experimental thermodynamic property data for water and steam. J. Phys. Chem. Ref. Data 20 (1991), 1023-1044. https://doi.org/10.1063/1.555894

55.  Setzmann, U., Wagner, W. A new equation of state and tables of thermodynamic prop­erties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 20 (1991), 1061-1155. https://doi.org/10.1063/1.555898

       1992

56.  Marx, V., Pruß, A., Wagner, W. Neue Zustandsgleichungen für R12, R22, R11 und R113. Beschreibung des thermodynamischen Zustandsverhaltens bei Temperaturen bis 525 K und Drücken bis 200 MPa. Fortschr.-Ber. VDI, Reihe 19, Nr. 57, VDI-Verlag, Düsseldorf, 1992.

57.  Händel, G., Kleinrahm, R., Wagner, W. Measurement of the (pressure, density, tempera­ture) relation of methane in the homogeneous gas and liquid region in the temperature range from 100 K to 260 K at pressures up to 8 MPa. J. Chem. Thermodynamics 24 (1992), 685-695. https://doi.org/10.1016/S0021-9614(05)80076-X

58.  Händel, G., Kleinrahm, R., Wagner, W. Measurement of the (pressure, density, tempera­ture) relation of dichlorodifluoromethane (R12) and of chlorodifluoromethane (R22) in parts of the homogeneous gas and liquid regions and on the coexistence curve. J. Chem. Thermodynamics 24 (1992), 697-713. https://doi.org/10.1016/S0021-9614(05)80077-1

59.  Gilgen, R., Kleinrahm, R., Wagner, W. Measurement of the (pressure, density, tempera­ture) relation of sulfurhexafluoride in the homogeneous region from 321.15 K to 333.15 K and on the coexistence curve from 288.15 K to 315.15 K. J. Chem. Thermodynamics 24 (1992), 953-964. https://doi.org/10.1016/S0021-9614(05)80006-0

60.  Achtermann, H. J., Hong, J., Wagner, W., Pruß, A. Refractive index and density isotherms for methane from 273 to 373 K at pressures up to 34 MPa. J. Chem. Eng. Data 37 (1992), 414-418. https://doi.org/10.1021/je00008a010

61.  Wagner, W., Kurzeja, N., Pieperbeck, B. The thermal behavior of fluid substances in the critical region - experiences from recent pρT measurements on SF6 with a multi-cell apparatus. Fluid Phase Equilibria 79 (1992), 151-174. https://doi.org/10.1016/0378-3812(92)85127-T

62.  Gilgen, R., Kleinrahm, R., Wagner, W. Supplementary measurements of the (pressure, density, temperature) relation of carbon dioxide in the homogeneous region at tempera­tures from 220 K to 360 K and at pressures up to 13 MPa. J. Chem. Thermodynamics 24 (1992), 1243-1250. https://doi.org/10.1016/S0021-9614(05)80264-2

       1993

63.  Wagner, W., Kleinrahm, R., Guo, X. Y., Olbricht, G., Jaeschke, M. Experimental investiga­tions of the vos effect on the gas density transducers for natural gas pipelines. Proceedings of the 1992 International Gas Research Conference, Orlando 16-19 November, 1992, Government Institutes Inc., Rockville, U.S.A., (1993), 863-868.

64.  Wagner, W., Pruß, A. International equations for the saturation properties of ordinary water substance – Revised according to the International Temperature Scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893 (1987). J. Phys. Chem. Ref. Data 22, (1993), 783-787. https://doi.org/10.1063/1.555926

65.  Wagner, W., Span, R. Special equations of state for methane, argon, and nitrogen for the temperature range from 270 K to 350 K at pressures up to 30 MPa. Int. J. Thermophysics 14 (1993), 699-725. https://doi.org/10.1007/BF00502103

66.  Lösch, H. W., Kleinrahm, R., Wagner, W. Neue Magnetschwebewaagen für gravimetrische Messungen in der Verfahrenstechnik. Chemie Ingenieur Technik 65 (1993), 1116-1117. https://doi.org/10.1002/cite.3306509107

67.  Wagner, W., Marx, V., Pruß, A. A new equation of state for chlorodifluoromethane (R22) covering the entire fluid range from 116 K to 550 K at pressures up to 200 MPa. Int. J. Refrigeration 16 (1993), 373-389. https://doi.org/10.1016/0140-7007(93)90055-D

68.  Brachthäuser, K., Kleinrahm, R., Lösch, H. W., Wagner, W. Entwicklung eines neuen Dichte­meßverfahrens und Aufbau einer Hochtemperatur-Hochdruck-Dichtemeßanlage. Fortschr.-Ber. VDI, Reihe 8, Nr. 371, VDI-Verlag, Düsseldorf, 1993.

       1994

69.  Gilgen, R., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pressure, density, temperature) relation of argon. I. The homogeneous gas and liquid regions in the temperature range from 90 K to 340 K at pressures up to 12 MPa. J. Chem. Thermo­dynamics 26 (1994), 383-398. https://doi.org/10.1006/jcht.1994.1048.

70.  Gilgen, R., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pressure, density, temperature) relation of argon. II. Saturated-liquid and saturated-vapour densities and vapour pressures along the entire coexistence curve. J. Chem. Thermo­dynamics 26 (1994), 399-413. https://doi.org/10.1006/jcht.1994.1049

71.  Lösch, H. W., Kleinrahm, R., Wagner, W. Neue Magnetschwebewaagen für gravimetrische Messungen in der Verfahrenstechnik. Jahrbuch 1994 "Verfahrenstechnik und Chemie­ingenieurwesen", VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC), 117-137, VDI-Verlag, Düsseldorf, 1994.

72.  Wagner, W., Saul, A., Pruß, A. International equations for the pressure along the melting curve and the sublimation curve of ordinary water substance. J. Phys. Chem. Ref. Data 23 (1994), 515-527. https://doi.org/10.1063/1.555947

73.  Lösch, H. W., Kleinrahm, R., Wagner, W. Neue Magnetschwebewaagen für gravimetrische Messungen in der Verfahrenstechnik. Chemie Ingenieur Technik 66 (1994), 1055-1058. https://doi.org/10.1002/cite.330660808

       1995

74.  Olbricht, G., Kleinrahm, R., Lösch, H. W., Wagner, W., Jaeschke, M. Entwicklung einer Transportablen Prüfeinrichtung für Betriebsdichteaufnehmer in Erdgasmeßstrecken. gwf-Gas/Erdgas 136 (1995), 73-78.

75.  Pruß, A., Wagner, W. Eine neue Fundamentalgleichung für das fluide Zustandsgebiet von Wasser für Temperaturen von der Schmelzlinie bis zu 1273 K bei Drücken bis zu 1000 MPa. Fortschr.-Ber. VDI, Reihe 6, Nr. 320, VDI-Verlag, Düsseldorf 1995.

76.  Wagner, W., Brachthäuser, K., Kleinrahm, R., Lösch, H. W. A new, accurate single-sinker densitometer for temperatures from 233 K to 523 K at pressures up to 30 MPa. Int. J. Thermophysics 16 (1995), 399-411. https://doi.org/10.1007/BF01441906

77.  Wagner, W., Rukes, B. Die Entwicklung einer neuen Industrie-Formulation für die Zustandseigenschaften von Wasser und Wasserdampf. Brennstoff-Wärme-Kraft 47 (1995), 312-316.

78.  Pruß, A., Wagner, W. A new equation of state for water as a candidate for the New Scien­tific Formulation of IAPWS, in "Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry", edited by H. J. White, Jr. et al., Proceedings of the 12th International Confer­ence on the Properties of Water and Steam, Begell House, New York, Wallingford, (1995), 66-77.

79.  Wagner, W., Rukes, B. Need, requirements and concept for the development of a New Industrial Formulation, in "Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry", edited by H. J. White, Jr. et al., Proceedings of the 12th International Confer­ence on the Properties of Water and Steam, Begell House, New York, Wallingford, (1995), 123-130.

80.  Kruse, A., Wagner, W. Development of fundamental equations g(p,T) and backward equa­tions T(p,h) and T(p,s) for the New Industrial Formulation, in "Physical Chemistry of Aque­ous Systems: Meeting the Needs of Industry", edited by H. J. White, Jr. et al., Proceedings of the 12th International Conference on the Properties of Water and Steam, Begell House, New York, Wallingford, (1995), 161-166.

81.  Wagner, W., Rukes, B. Concept and Status of Development of the New Industrial Formu­lation of IAPWS, in "Physicochemical Properties of Water and Aqueous Solutions for Industrial Applications", Extended Abstracts of the Symposium 1995, International Asso­ciation for the Properties of Water and Steam, French National Committee, Paris, September 20, (1995), 49-56.

82.  Span, R., Kleinrahm, R., Wagner, W., Konopka, G., Jaeschke, M., Bittkow, P. Vereinfachte Zustandsgleichungen für Erdgase. gwf-Gas/Erdgas 136 (1995), 644-648.

       1996

83.  Mecke, M., Müller, A., Winkelmann, J., Vrabec, J., Fischer, J., Span, R., Wagner, W. An accurate van der Waals-type equation of state for the Lennard-Jones fluid. Int. J. Thermo­physics 17 (1996), 391-404. https://doi.org/10.1007/BF01443399

84.  Wagner, W., Pruß, A. Die neue internationale Standard-Zustandsgleichung für Wasser für den allgemeinen und wissenschaftlichen Gebrauch. Jahrbuch 1996, VDI-Gesellschaft Ener­gietechnik, VDI-Verlag, Düsseldorf, 1996, 326-332.

85.  Jaeschke M., Guo, X. Y., Kleinrahm, R., Wagner, W. A new accurate method for correcting the vos effect on vibrating gas density transducers. Proceedings of the International Gas Research Conference, Cannes, 6 - 9 November 1995, Government Institutes Inc., Rockville, U.S.A., (1996), 871-880.

86.  Wagner, W., de Reuck, M. International thermodynamic tables of the fluid state 13, methane. Blackwell Science, Oxford, 1996.

87.  Wagner, W., Pruß, A. Neue internationale Standard-Zustandsgleichung für Wasser zum allgemeinen und wissenschaftlichen Gebrauch. Chemie Ingenieur Technik 68 (1996), 1100-1101.

88.  Nowak, P., Kleinrahm, R., Wagner, W. Präzisionsmessungen der thermischen Zustands­größen von Ethylen, Stickstoff und Kohlendioxid. Fortschr.-Ber. VDI, Reihe 3, Nr. 456, VDI-Verlag, Düsseldorf, 1996.

89.  Span, R., Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25 (1996), 1509-1596. https://doi.org/10.1063/1.555991

90.  Nowak, P., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pressure, density, temperature) relation of ethylene. I. The homogeneous gaseous and liquid regions in the temperature range from 105 K to 340 K at pressures up to 12 MPa. J. Chem. Thermodynamics 28 (1996), 1423-1439. https://doi.org/10.1006/jcht.1996.0125

91.  Nowak, P., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pressure, density, temperature) relation of ethylene. II. Saturated-liquid and saturated-vapour densities and vapour pressures along the entire coexistence curve. J. Chem. Thermo­dynamics 28 (1996), 1441-1460. https://doi.org/10.1006/jcht.1996.0126

       1997

92.  Tegeler, Ch., Span, R., Wagner, W. Eine neue Fundamentalgleichung für das fluide Zustandsgebiet von Argon für Temperaturen von der Schmelzlinie bis 700 K und Drücke bis 1000 MPa. Fortschr.-Ber. VDI, Reihe 3, Nr. 480, VDI-Verlag, Düsseldorf, 1997.

93.  Wagner, W., Lösch, H. W., Kleinrahm, R. Wiegen durch Wände. RUBIN, Wissenschafts­magazin der Ruhr-Universität Bochum, 7 (1997), 1/97, 24-30.

94.  Wagner, W., Pruß, A. Die neue internationale Standard-Zustandsgleichung für Wasser für den allgemeinen und wissenschaftlichen Gebrauch. Jahrbuch 1997 der VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC), 134-156, VDI-Verlag, Düsseldorf, 1997.

95.  Tielkes, Th., Kurzeja, N., Wagner, W. Präzisionsmessungen der thermischen Zustandsgrößen im kritischen Gebiet von Kohlendioxid. Fortschr.-Ber. VDI, Reihe 3, Nr. 488, VDI-Verlag, Düsseldorf, 1997.

96.  Docter, A., Lösch, H. W., Wagner, W. Entwicklung und Aufbau einer Anlage zur simultanen Messung der Viskosität und der Dichte fluider Stoffe. Fortschr.-Ber. VDI, Reihe 3, Nr. 494, VDI-Verlag, Düsseldorf, 1997.

97.  Nowak, P., Tielkes, Th., Kleinrahm, R., Wagner, W. Supplementary measurements of the (pρ, T) relation of carbon dioxide in the homogeneous region at T = 313 K and on the co­existence curve at T = 304 K. J. Chem. Thermodynamics 29 (1997), 885-889. https://doi.org/10.1006/jcht.1997.0208

98.  Nowak, P., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pρ, T) relation of nitrogen. I. The homogeneous gaseous and liquid regions in the temperature range from 66 K to 340 K at pressures up to 12 MPa. J. Chem. Thermodynamics 29 (1997), 1137-1156. https://doi.org/10.1006/jcht.1997.0230

99.  Nowak, P., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pρ, T) relation of nitrogen. II. Saturated-liquid and saturated-vapour densities and vapour pressures along the entire coexistence curve. J. Chem. Thermodynamics 29 (1997), 1157-1174. https://doi.org/10.1006/jcht.1997.0231

100.  Span, R., Wagner, W. Stoffwerte bei Sättigung. VDI-Wärmeatlas, 8. Auflage, Dc 39-61, Springer-Verlag, Berlin, 1997.

101.                                                                                        Span, R., Wagner, W. On the extrapolation behavior of empirical equations of state. Int. J. Thermophysics 18 (1997), 1415-1443. https://doi.org/10.1007/BF02575343

       1998

102.  Wagner, W., Rukes, B. IAPWS-IF97: Die neue Industrie-Formulation. Brennstoff-Wärme-Kraft 50 (1998), 42-47.

103.  Wagner, W., Kruse, A. Properties of Water and Steam - The Industrial Standard IAPWS-IF97 / Zustandsgrößen von Wasser und Wasserdampf - Der Industrie-Standard IAPWS-IF97. Springer-Verlag, Berlin, 1998.

104.  Kruse, A., Wagner, W. Neue Zustandsgleichungen für industrielle Anwendungen im tech­nisch relevanten Zustandsgebiet von Wasser. Fortschr.-Ber. VDI, Reihe 6, Nr. 393, VDI-Verlag, Düsseldorf, 1998.

105.  Span, R., Collmann, H.-J., Wagner, W. Simultaneous optimization as a method to establish generalized functional forms for empirical equations of state. Int. J. Thermophysics 19 (1998), 491-500. https://doi.org/10.1023/A:1022573729698

106.  Jaeschke, M., Boden, R., Brandt, O., Gómez Mellado, B., Kleinrahm, R., Wagner, W. An improved evaluation procedure for density transducers used in natural gas pipelines. IGRC 98, Proceedings of the 1998 International Gas Research Conference, Vol. II Transmission and Storage, Gas Research Institute, Chicago, (1998), 551-563.

107.  Gómez Mellado, B., Kleinrahm, R., Wagner, W., Jaeschke, M., Boden, R., Brandt, O. Portable densimeter for testing gas density transducers in natural gas grids. IGRC 98, Proceedings of the 1998 International Gas Research Conference, Vol. II Transmission and Storage, Gas Research Institute, Chicago, (1998), 584-594.

108.  Span, R., Lemmon, E. W., Jacobsen, R. T, Wagner, W. A reference quality equation of state for nitrogen. Int. J. Thermophysics 19 (1998), 1121-1132. https://doi.org/10.1023/A:1022689625833

         1999

109.  Klimeck, J., Kleinrahm, R., Wagner, W. An accurate single-sinker densimeter and measurements of the (pρ, T) relation of argon and nitrogen in the temperature range from (235 to 520) K at pressures up to 30 MPa. J. Chem. Thermodynamics 30 (1998), 1571-1588. https://doi.org/10.1006/jcht.1998.0421

110.  Rukes, B., Weber, I., Kruse, A., Wagner, W. Erste Erfahrungen mit der IAPWS-IF97 - Auswirkungen der neuen Industrie-Formulation auf Kraftwerksprozesse im Vergleich zur IFC-67. Brennstoff-Wärme-Kraft 51, 3, (1999), 30-36.

111.  Wagner, W., Rukes, B. Die neue Industrie-Formulation IAPWS-IF97 - Auswirkungen auf Kraftwerksprozesse im Vergleich zur IFC-67. VDI-Bericht 1457 Fortschrittliche Energie­wandlung und -anwendung, VDI-Verlag, Düsseldorf, (1999), 35-49.

112.  Docter, A., Lösch, H. W., Wagner, W. A new apparatus for combined measurements of the viscosity and density of fluids for temperatures from 233 K to 523 K at pressures up to 30 MPa. Int. J. Thermophysics 20 (1999), 485-505. https://doi.org/10.1023/A:1022601003582

113.  Kurzeja, N., Tielkes, Th., Wagner, W. The nearly classical behavior of a pure fluid on the critical isochore very near the critical point under influence of gravity. Int. J. Thermo­physics 20 (1999), 531-561. https://doi.org/10.1023/A:1022657121329

114.  Tegeler, Ch., Span, R., Wagner, W. A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28 (1999), 779-850. https://doi.org/10.1063/1.556037

115.  Smukala, J., Span, R., Wagner, W. Eine neue Fundamentalgleichung für das fluide Zustandsgebiet von Ethylen für Temperaturen von der Schmelzlinie bis 450 K und Drücke bis 300 MPa. Fortschr.-Ber. VDI, Reihe 3, Nr. 616, VDI-Verlag, Düsseldorf, 1999.

         2000

116.  Wagner, W., Span, R., Bonsen, C. Wasser und Wasserdampf. Springer electronic media, Springer-Verlag, Heidelberg, 2000. (Software)

117.  Wagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Mareš, R., Oguchi, K., Sato, H., Stöcker, I., Šifner, O., Takaishi, Y., Tanishita, I., Trübenbach, J., and Willkommen, Th. The IAPWS Industrial Formulation 1997 for the Thermodynamic Prop­erties of Water and Steam. Journal of Engineering for Gas Turbines and Power 122 (2000), 150-182. https://doi.org/10.1115/1.483186

118.  Wagner, W. Accurate equations of state - from the past to the future, in "Steam, Water and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry", Proceedings of the 13th International Conference on the Properties of Water and Steam, eds. P. Tremaine, P. G. Hill, D. Irish and P. V. Balakrishnan, NRC Research Press, Ottawa, (2000), 1-12.

119.  Wagner, W. The new industrial formulation IAPWS-IF97 - a short description of its features, in "Steam, Water and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry", Proceedings of the 13th International Conference on the Properties of Water and Steam, eds. P. Tremaine, P. G. Hill, D. Irish and P. V. Balakrishnan, NRC Research Press, Ottawa, (2000), 265-273.

120.  Bonsen, C., Wagner, W. Software developments for the new industrial formulation IAPWS-IF97, in "Steam, Water and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry", Proceedings of the 13th Inter­national Conference on the Properties of Water and Steam, eds. P. Tremaine, P. G. Hill, D. Irish and P. V. Balakrishnan, NRC Research Press, Ottawa, (2000), 283-290.

121.  Smukala, J., Span, R., Wagner, W. A new equation of state for ethylene covering the fluid region for temperatures from the melting line to 450 K at pressures up to 300 MPa. J. Phys. Chem. Ref. Data 29 (2000), 1053-1121. https://doi.org/10.1063/1.1329318

122.  Span, R., Lemmon, E. W., Jacobsen, R. T, Wagner, W., Yokozeki, A. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. J. Phys. Chem. Ref. Data 29 (2000), 1361-1433. https://dx.doi.org/10.1063/1.1349047

         2001

123.  Gómez Mellado, B., Kleinrahm, R., Lösch, H. W., Wagner, W., Brandt, O., Boden, R. Entwicklung eines transportablen Dichteprüfgerätes für Erdgasmessstationen. GWF-Gas/Erdgas 142 (2001), 282-288.

124.  Klimeck, J., Kleinrahm, R., Wagner, W. Measurements of the (pρ, T) relation of methane and carbon dioxide in the temperature range from (240 to 520) K at pressures up to 30 MPa using a new accurate single-sinker densimeter. J. Chem. Thermodynamics 33 (2001), 251-267. https://doi.org/10.1006/jcht.2000.0711

125.  Span, R., Wagner, W., Lemmon, E. W., Jacobsen, R. T. Multiparameter equations of state – recent trends and future challenges. Fluid Phase Equilibria 183-184 (2001), 1-20. https://doi.org/10.1016/S0378-3812(01)00416-2

         2002

126.  Wagner, W., Pruß, A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31 (2002), 387-535. https://doi.org/10.1063/1.1461829

127.  Wagner, W. Stoffwerte von Wasser. VDI-Wärmeatlas, 9. Auflage, Dba 1-15, Springer-Verlag, Berlin, 2002.

128.  Span, R., Wagner, W. Stoffwerte bei Sättigung. VDI-Wärmeatlas, 9. Auflage, Dcb 1-23, Springer-Verlag, Berlin, 2002.

129.  Evers, C., Lösch, H. W., Wagner, W. Ein kombiniertes Viskositäts-Dichte-Messverfahren. Chemie Ingenieur Technik 74 (2002), 959-963. https://doi.org/10.1002/1522-2640(200207)74:7<959::AID-CITE959>3.0.CO;2-T

130.  Funke, M., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pρ, T) relation of sulphur hexafluoride (SF6). I. The homogeneous gaseous and liquid region in the tem­perature range from 225 K to 340 K at pressures up to 12 MPa. J. Chem. Thermodynamics 34 (2002), 717-734. https://doi.org/10.1006/jcht.2001.0906

131.  Funke, M., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pρ, T) relation of sulphur hexafluoride (SF6). II. Saturated-liquid and saturated-vapour densities and vapour pressures along the entire coexistence curve. J. Chem. Thermodynamics 34 (2002), 735-754. https://doi.org/10.1006/jcht.2001.0907

132.  Evers, C., Lösch, H. W., Wagner, W. An absolute viscometer-densimeter and measure­ments of the viscosity of nitrogen, methane, helium, neon, argon, and krypton over a wide range of density and temperature. Int. J. Thermophysics 23 (2002), 1411-1439. https://doi.org/10.1023/A:1020784330515

133.  Funke, M., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pρ, T) relation of ethane. I. The homogeneous gaseous and liquid region in the temperature range from 95 K to 340 K at pressures up to 12 MPa. J. Chem. Thermodynamics 34 (2002), 2001-2015. https://doi.org/10.1016/S0021-9614(02)00266-5

134.  Funke, M., Kleinrahm, R., Wagner, W. Measurement and correlation of the (pρ, T) relation of ethane. II. Saturated-liquid and saturated-vapour densities and vapour pressures along the entire coexistence curve. J. Chem. Thermodynamics 34 (2002), 2017-2039. https://doi.org/10.1016/S0021-9614(02)00266-5

2003

135.  Bücker, D., Span, R., Wagner, W. Thermodynamic property models for moist air and combustion gases. J. Eng. Gas Turbines and Power 125 (2003), 374-384. https://doi.org/10.1115/1.1520154

136.  Claus, P., Kleinrahm, R., Wagner, W. Measurements of the (pρ, T) relation of ethylene, ethane, and sulphur hexafluoride in the temperature range from 235 K to 520 K at pressures up to 30 MPa using an accurate single-sinker densimeter. J. Chem. Thermo­dynamics 35 (2003), 159-175. https://doi.org/10.1016/S0021-9614(02)00356-7

137.  Span, R., Wagner, W. Equations of state for technical applications. I. Simultaneously optimized functional forms for nonpolar and polar fluids. Int. J. Thermophysics 24 (2003), 1-39. https://doi.org/10.1023/A:1022390430888

138.  Span, R., Wagner, W. Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophysics 24 (2003), 41-109. https://doi.org/10.1023/A:1022310214958

139.  Span, R., Wagner, W. Equations of state for technical applications. III. Results for polar fluids. Int. J. Thermophysics 24 (2003), 111-162. https://doi.org/10.1023/A:1022362231796

140.  Wagner, W., Kleinrahm, R., Lösch, H. W., Watson, JTR. Hydrostatic balance densimeters with magnetic suspension couplings, in IUPAC Experimental Thermodynamics, Vol. VI: Measurements of the Thermodynamic Properties of Single Phases, Goodwin, A.R.H., Marsh, K.N., and Wakeham, W.A. (eds.), Elsevier, Amsterdam, (2003), 127-149.

141.  Jaeschke, M., Benito, A., Fredheim, A., Henault, J.-M., Viglietti, B., van Wesenbeek, P., Klimeck, R., Kunz, O., Wagner, W. GERG project: Wide-range reference equation of state for natural gases. GWF-Gas/Erdgas 144 (2003), 430-435.

2004

142.  Wagner, W., Kleinrahm, R. Densimeters for very accurate density measurements of fluids over large ranges of temperature, pressure, and density. Metrologia 41 (2004), issue 2, S24-S39. https://doi.org/10.1088/0026-1394/41/2/S03

143.  Glos, S., Kleinrahm, R., Wagner, W., Jaeschke, M., Schley, P., Uhrig, M. Präzisions-Dichte­messgerät zur genauen Messung der Normdichte von Erdgasen. GWF-Gas/Erdgas 145 (2004), 394-400.

144.  Glos, S., Kleinrahm, R., Wagner, W. Measurement of the (pρ, T) relation of propane, propylene, n‑butane, and isobutane in the temperature range from 95 K to 340 K at pressures up to 12 MPa using an accurate two-sinker densimeter. J. Chem. Thermo­dynamics 36 (2004), 1037-1059. https://doi.org/10.1016/j.jct.2004.07.017

145.  Wagner, W., Kunz, O. Die ganze (thermodynamische) Wahrheit steckt in einer Formel. RUBIN, Wissenschaftsmagazin der Ruhr-Universität Bochum, Sonderheft Maschinenbau (2004), 74-82. https://news.rub.de/sites/default/files/2004_maschinenbau.pdf

2005

146.  Feistel, R., Wagner, W. High-pressure thermodynamic Gibbs functions of ice and sea ice. J. Marine Research 63 (2005), 95-139. https://doi.org/10.1357/0022240053693789

147.  Feistel, R., Wagner, W., Tchijov, V., and Guder, C. Numerical implementation and oceano­graphic application of the Gibbs potential of ice, Ocean science discussions, Bd. 2, Nr. 1, 2005, 37-61, https://doi.org/10.5194/osd-2-37-2005

148.  Feistel, R., Wagner, W., Tchijov, V., Guder, C. Numerical implementation and oceano­graphic application of the Gibbs potential of ice. Ocean Science. 1, (2005), 29-38. https://doi.org/10.5194/os-1-29-2005

149.  Feistel, R., and Wagner, W. A comprehensive Gibbs potential of ice Ih, in Nucleation theory and applications, J. W. P. Schmelzer, G. Röpke, and V. B. Priezzhev, Hrsg. 2005, 120-145.

150.  Feistel, R., Wagner, W. A Comprehensive Gibbs thermodynamic potential of ice, in “Water, Steam, and Aqueous Solutions for Electric Power - Advances in Science and Technology”, Proceedings of the 14th International Conference on the Properties of Water and Steam, eds. M. Nakahara, N. Matubayasi, M. Ueno, K. Yasuoka, and K. Watanabe, Maruzen Co. Ltd, (2005), 751-756.

151.  Overhoff, U., Kunz, O., Wagner, W. Werkzeuge zur einfachen Nutzung von Zustands­gleichungen. Chemie Ingenieur Technik 77 (2005), 1092-1093. https://doi.org/10.1002/cite.200590203

152.  Feistel, R., Wagner, W. A comprehensive Gibbs potential of ice Ih, in “Nucleation Theory and Applications”, eds., J. W. P. Schmelzer, G. Röpke, and B. Priezzhev, Joint Institute for Nuclear Research (JINR), Dubna, 2005.

         2006

153.  Wagner, W., Overhoff, U. ThermoFluids. Interactive software for the calculation of thermodynamic properties for more than 60 substances. Springer, springeronline.com, 2006. (Software)

154.  Wagner, W. Stoffwerte von Wasser. VDI-Wärmeatlas, 10. Auflage, Dba 1-15, Springer-Verlag, Berlin, 2006.

155.  Span, R., Wagner, W. Stoffwerte bei Sättigung. VDI-Wärmeatlas, 10. Auflage, Dcb 1-23, Springer-Verlag, Berlin, 2006.

156.  Wagner, W., Overhoff, U. Extended IAPWS-IF97 Steam Tables. Interactive software for the calculation of thermodynamic and transport properties of water and steam. Springer, springeronline.com, 2006.

157.  Bücker, D., Wagner, W. A reference equation of state for the thermodynamic properties of ethane for temperatures from the melting line to 675 K and pressures up to 900 MPa. J. Phys. Chem. Ref. Data 35 (2006), 205-266. https://doi.org/10.1063/1.1859286

158.  Bücker, D., Wagner, W. A reference equation of state for the thermodynamic properties of fluid phase n-butane and isobutane. J. Phys. Chem. Ref. Data 35 (2006), 929-1020. https://doi.org/10.1063/1.1901687

159.  Feistel, R., Wagner, W. A new equation of state for H2O ice Ih. J. Phys. Chem. Ref. Data 35 (2006), 1021-1047. https://doi.org/10.1063/1.2183324

160.  Kretzschmar, H.-J., Cooper, J. R., Dittmann, A., Friend, D., G., Gallagher, J. S., Knobloch, K., Mareš, R., Miyagawa, K., Stöcker, I., Trübenbach, J., Wagner, W., Willkommen, Th. Supple­mentary backward equations for pressure as a function of enthalpy and entropy (hs) to the industrial formulation IAPWS-IF97 for water and steam. J. Eng. Gas Turbines and Power 128 (2006), 702-713. https://doi.org/10.1115/1.1915392

2007

161.  Feistel, R., Wagner, W. Sublimation pressure and sublimation enthalpy of H2O ice Ih between 0 and 273.16 K. Geochim. Cosmochim. Acta 71 (2007), 36-45. https://doi.org/10.1016/j.gca.2006.08.034

162.  Kretzschmar, H.-J., Cooper, J. R., Dittmann, A., Friend, D., G., Gallagher, J. S., Harvey, A. H., Knobloch, K., Mareš, R., Miyagawa, K., Okita, N., Stöcker, I., Wagner, W., Weber, I. Supplementary backward equations T (ph), v (p, h), and T (ps), v (ps) for the critical and supercritical regions (region 3) of the industrial formulation IAPWS-IF97 for water and steam. J. Eng. Gas Turbines and Power 129 (2007), 294-303. https://doi.org/10.1115/1.2181598

163.  Kunz, O., Klimeck, R., Wagner, W., Jaeschke, M. The GERG-2004 wide-range equation of state for natural gases and other mixtures. GERG Technical Monograph 15 (2007). Fortschr.-Ber. VDI, Reihe 6, Nr. 557, VDI Verlag, Düsseldorf, 2007; also available as GERG Technical Monograph 15 (2007).

164.  McLinden, M. O., Kleinrahm, R., Wagner, W. Force transmission errors in magnetic suspension densimeters. Int. J. Thermophysics 28 (2007), 429-448. https://doi.org/10.1007/s10765-007-0176-0

165.  Kretzschmar, H.-J., Cooper, J. R., Dittmann, A., Friend, D. G., Gallagher, J. S., Harvey, A. H., Knobloch, K., Mareš, R., Miyagawa, K., Okita, N., Span, R., Stöcker, I., Wagner, W., Weber, I. Supplementary backward equations (hs) for the critical and supercritical regions (region 3), equations for the region boundaries and an equation for the two-phase region of the IAPWS Industrial Formulation 1997 for the thermodynamic properties of water and steam. J. Eng. Gas Turbines and Power 129 (2007), 1125-1137. https://doi.org/10.1115/1.2719267

         2008

166.  Wagner, W., Kretzschmar, H.-J. International Steam Tables – Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97. Springer-Verlag, Berlin, 2008.

167.  Schilling, G., Kleinrahm, R., Wagner, W. Measurement and correlation of the (p, ρ, T) relation of liquid n‑heptane, n-nonane, 2,4-dichlorotoluene, and bromobenzene in the temperature range from 233.15 K to 473.15 K at pressures up to 30 MPa for use as density reference liquids. J. Chem. Thermodynamics 40 (2008), 1095-1105. https://doi.org/10.1016/j.jct.2008.02.020

168.  Feistel, R., Wright, D. G., Miyagawa, K., Hruby, J., Jackett, D. R., McDougall, T. J., Wagner, W. Development of thermodynamic potentials for fluid water, ice and seawater: a new standard for oceanography. Ocean Sci. Discuss. 5 (2008), 375-418. https://doi.org/10.5194/os-4-275-2008

169.  Wagner, W. From the beginning to this day – My first naive ideas and the research results achieved, in “Water, Steam and Aqueous Solutions – Advances in Science and Technology for Power Generation” Proceedings of the 15th International Conference on the Properties of Water and Steam, eds. R. Span and I. Weber, VDI – The Association of German Engineers, GET – Society for Energy Technology, CD-ROM (ISBN 978-3-931384-64-7), Düsseldorf, 2008.

170.  Feistel, R., Wright, D. G., Miyagawa, K., Harvey, A. H., Hruby, J., Jackett, D. R., McDougall, T. J., Wagner, W. Development of thermodynamic potentials for fluid water, ice and seawater, in “Water, Steam and Aqueous Solutions – Advances in Science and Technology for Power Generation” Proceedings of the 15th International Conference on the Properties of Water and Steam, eds. R. Span and I. Weber, VDI – The Association of German Engineers, GET – Society for Energy Technology, CD-ROM (ISBN 978-3-931384-64-7), Düsseldorf, 2008.

171.  Feistel, R., Wright, D. G., Miyagawa, K., Harvey, A. H., Hruby, J., Jackett, D. R., McDougall, T. J., Wagner, W. Mutual consistent thermodynamic potentials for fluid water, ice and seawater. Ocean Science 4 (2008), 275-291. https://doi.org/10.5194/os-4-275-2008

2009

172.  Guder, C., Wagner, W. A reference equation of state for the thermodynamic properties of sulphur hexafluoride for temperatures from the melting line to 625 K and pressures up to 150 MPa. J. Phys. Chem. Ref. Data 38 (2009), 33-94. https://doi.org/10.1063/1.3037344

173.  Kretzschmar, H.-J., Cooper, J. R., Gallagher, J. S., Harvey, A. H., Knobloch, K., Mareš, R., Miyagawa, K., Okita, N., Span, R., Stöcker, I., Wagner, W., Weber, I. Supplementary back­ward equations v(p,T) for the critical and supercritical regions (region 3) of the IAPWS Industrial Formulation 1997 for the thermodynamic properties of water and steam. J. Eng. Gas Turbines and Power 131 (2009), 043101, 1-16. https://doi.org/10.1115/1.3028630

174.  Lemmon, E., McLinden, M. O., Wagner, W. Thermodynamic properties of propane. III. A reference equation of state for temperatures from the melting line to 650 K and pressures up to 1000 MPa. J. Chem. Eng. Data 54 (2009), 3141-3180. https://doi.org/10.1021/je900217v

2010

175.  Feistel, R., Wright, D. G., Jackett, D. R., Miyagawa, K., Reissmann, J. H., Wagner, W., Overhoff, U., Guder, C., Feistel, A., Marion, G. M. Numerical implementation and oceano­graphic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations. Ocean Science 6 (2010), 633-677. https://doi.org/10.5194/os-6-633-2010

176.  Wright, D. G., Feistel, R., Jackett, D. R., Miyagawa, K., Reissmann, J. H., Wagner, W., Overhoff, U., Guder, C., Feistel, A., Marion, G. M. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines. Ocean Science. 6 (2010), 695-718. https://doi.org/10.5194/os-6-695-2010

177.  Wright, D. G., Feistel, R., Jackett, D. R., Miyagawa, K., Reissmann, J. H., Wagner, W., Overhoff, U., Guder, C., Feistel, A., Marion, G. M. Numerical implementation and oceanographic application of the thermodynamic potentials of water, ice, seawater and air – Part 1: Background and equations. Ocean Science Discussions 7 (2010), 521-647. https://doi.org/10.5194/osd-7-521-2010

178.  Feistel, R., Wright, D. G., Jackett, D. R., Miyagawa, K., Reissmann, J. H., Wagner, W., Overhoff, U., Guder, C., Feistel, A., Marion, G. M. Numerical implementation and oceanographic application of the thermodynamic potentials of water, ice, seawater and air – Part 2: The library routines. Ocean Science Discussions 7 (2010), 649-708. https://doi.org/10.5194/osd-7-649-2010

179.     Richter, M., Kleinrahm, R., Glos, S., Wagner, W., Span, R., Schley, P., Uhrig, M. A two-sinker densimeter for accurate measurements of the density of natural gases at standard conditions. Int. J. Thermophysics 31 (2010), 680-697. https://doi.org/10.1007/s10765-010-0726-8

180.  Wagner, W., Kretzschmar, H.-J. Properties of Water and Steam. VDI-Heat Atlas, second edition, Section D2.1, 153-171, Springer-Verlag, Berlin Heidelberg, 2010.

2011

181.  Sommer, D., Kleinrahm, R., Span, R., Wagner, W. Measurements and correlation of the (pρ, T) relation of liquid cyclohexane, toluene, and ethanol in the temperature range from 233.15 K to 473.15 K at pressures up to 30 MPa for use as density reference liquids. J. Chem. Thermodynamics 43 (2011), 117-132. https://doi.org/10.1016/j.jct.2010.08.010

182.  Wagner, W., Kurzeja, N. Letter to the editor. Int. J. Thermophys. 32 (2011), 549-552. https://doi.org/10.1007/s10765-011-0945-7

183.  Lemmon, E. W., Ortiz-Vega, D. O., Starling, K. E., Hall, K. R., Wagner, W. Deviations between the AGA-8 and GERG-2008 equations of state for natural gases. Natural Gas Sampling Technology Conference (NGSTech), New Orleans, January 26, 2011.

184.  Wagner, W., Riethmann, T., Feistel, R., Harvey, A. H. New equations for the melting pressure and sublimation pressure of H2O ice Ih. J. Phys. Chem. Ref. Data 40 (2011), 043103-1 - 043103-11. https://doi.org/10.1063/1.3657937

         2012 - 2013

185.  Kunz, O., Wagner, W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004. J. Chem. Eng. Data 57 (2012), 3032-3091. https://doi.org/10.1021/je300655b

186.  Wagner, W., Kretzschmar, H.-J. Stoffwerte von Wasser. VDI-Wärmeatlas, 11. Auflage, D2.1, 1-15, Springer-Verlag, Berlin, 2013.

187.  Wagner, W., Dauber, F., Kretzschmar, H.-J., Mareš, R., Miyagawa, K., Span, R. Extended equation for region 5 of the Industrial Formulation IAPWS-IF97. Proceedings of the International Conference on the Properties of Water and Steam, University of Greenwich, UK, Institution of Mechanical Engineers, London, 2013.

         2015 - 2021

188.  Kretzschmar, H.-J. Feistel, R., Wagner, W., Miyagawa, K., Harvey, A. H., Cooper, J. R., Hiegemann, M. Blangetti, F. L., Orlov, K. A., Weber, I., Singh, A., Herrmann, S. The IAPWS Industrial Formulation for the Thermodynamic Properties of Seawater. Desalination and Water Treatment 55 (2015), 1177-1199. https://doi.org/10.1080/19443994.2014.925838

189.  Wagner, W., Thol, M. The behavior of IAPWS-95 at temperatures from 250 K to 300 K and pressures up to 400 MPa: Evaluation based on recently derived property data. J. Phys. Chem. Ref. Data 44 (2015), 043102, 1-40. https://doi.org/10.1063/1.4931475

190.  Thol, M., Rutkai, G., Köster, A., Miroshnichenko, S., Wagner, W., Vrabec, J., Span, R. Equation of state for 1,2-dichlorethane based on a hybrid data set. Molecular Phys. 115 (2016), 1166-1185. https://doi.org/10.1080/00268976.2016.1262557

191.  Kretzschmar, H.-J., Wagner, W. International Steam Tables – Properties of Water and Steam based on the Industrial Formulation IAPWS-IF97. Springer Vieweg, Berlin, 2019. https://doi.org/10.1007/978-3-662-53219-5

192.  Lemmon, E., Overhoff, U., McLinden M. O., Wagner, W. A reference equation of state for the thermodynamic properties of propene for temperatures from the melting line to 575 K and pressures up to 1000 MPa. To be submitted to J. Phys. Chem. Ref. Data (2021).