If more than one reference is given for a substance, the first reference refers to the equation currently used in FluidCal. In a few cases, there is a more recent equation of state given in second position, which unfortunately has not been published to date. These equations as well as missing (see the example at the end of this section) or upcoming fundamental equations of state and the most recent transport equation partly contained in the second reference can be integrated into FluidCal on request.
Acetone Calculation of the thermodynamic properties of acetone using the equation of state of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
Ammonia Calculation of the thermodynamic properties of ammonia using the equation of state of
Gao, K., Wu, J., Bell, I.H., Harvey, A.H., and Lemmon, E.W., A Reference Equation of State with an Associating Term for the Thermodynamic Properties of Ammonia, J. Phy. Chem. Ref. Data 52, 013102(2023). doi.org10.1063/5.0128269
Argon Calculation of the thermodynamic properties of argon using the equation of state of
Tegeler, Ch., Span, R., Wagner, W., A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28 (1999), 779-850. doi.org/10.1063/1.556037.
Benzene Calculation of the thermodynamic properties of benzene using the equation of state of
Thol, M., Lemmon, E. W., and Span, R., In its final form of 2013 unpublished equation of state, but very similar to the one published as: Equation of state for benzene for temperatures from the melting line up to 725 K with pressures up to 500 MPa, High Temp.-High Press., 41 (2012), 81-97.
Butane Calculation of the thermodynamic properties of butane using the equation of state of
Bücker, D., Wagner, W., Reference equation of state for the thermodynamic properties of fluid phase n-butane and isobutane. J. Phys. Chem. Ref. Data 35 (2006), 929-1020.
Butene Calculation of the thermodynamic properties of 1-butene using the equation of state of
(1-Butene) Lemmon, E. W., Ihmels, E. C., Thermodynamic properties of the butenes. Part II. Short
fundamental equations of state. Fluid Phase Equilibria 228-229 (2005), 173-187.
doi.org/10.1016/j.fluid.2004.09.004.
Butene Calculation of the thermodynamic properties of cis-2-butene using the equation of state of
(cis-2-Butene) Lemmon, E. W., Ihmels, E. C., Thermodynamic properties of the butenes. Part II. Short
fundamental equations of state. Fluid Phase Equilibria 228-229 (2005), 173-187.
doi.org/10.1016/j.fluid.2004.09.004.
Butene Calculation of the thermodynamic properties of trans-2-butene using the equation of state of
(trans-2- Lemmon, E. W., Ihmels, E. C., Thermodynamic properties of the butenes. Part II. Short
Butene) fundamental equations of state. Fluid Phase Equilibria 228-229 (2005), 173-187.
doi.org/10.1016/j.fluid.2004.09.004.
Carbon Calculation of the thermodynamic properties of carbon dioxide using the equation of state of
dioxide Span, R., Wagner, W., A new equation of state for carbon dioxide covering the fluid
region from the triple-point temperature to 1100 K at pressures up to 800 MPa.
J. Phys. Chem. Ref. Data 25 (1996), 1509-1596. doi.org/10.1063/1.555991.
Carbon Calculation of the thermodynamic properties of carbon monoxide using the equation of state of
monoxide Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids.
J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
Carbon Calculation of the thermodynamic properties of carbon sulfide using the equation of state of
sulfide Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids.
J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
Chlorine Calculation of the thermodynamic properties of chlorine using the equation of state of
Thol, M., Herrig, S., Span, R., Lemmon, E. W., A Fundamental Equation of State for the Calculation of Thermodynamic Properties of Chlorine. AIChE Journal 67 (2021). doi.org/10.1002/aic.17326
Chloroethene Calculation of the thermodynamic properties of chloroethene using the equation of state of
(vinyl chloride) Thol, M., Fenkl, F., Lemmon, E.W., A Fundamental Equation of State for Chloroethene for Temperatures
from the Triple Point to 430 K and Pressures to 100 MPa, Int. J. Thermophys. 43:41 (2022).
doi.org/10.1007/s10765-021-02961-3
Cyclohexane Calculation of the thermodynamic properties of cyclohexane using the equation of state of
Zhou, Y, Liu, J., Penoncello S. G., Lemmon, E. W., An equation of state for the thermodynamic properties of cyclohexane. J. Phys. Chem. Ref. Data 43, 043105 (2014). doi.org/10.1063/1.4900538.
Cyclopentane Calculation of the thermodynamic properties of cyclopentane using the equation of state of
Gedanitz, H., Dávila, M. J., Lemmon, E. W., Speed of sound measurements and a fundamental equation of state for cyclopentane. J. Chem. Eng. Data 60 (2015), 1331-1337. doi.org/10.1021/je5010164.
Cyclopropane Calculation of the thermodynamic properties of cyclopropane using the equation of state of
Bonsen, C., Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Thermodynamics, Ruhr-University Bochum, 2002.
Decane Calculation of the thermodynamic properties of decane using the equation of state of
Lemmon, E W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
Diethylether Calculation of the thermodynamic properties of diethylether using the equation of state of
Bonsen, C., Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Thermodynamics, Ruhr-University Bochum, 2002.
1,2-Dichloro- Calculation of the thermodynamic properties of 1,2-dichloroethane using the equation of state of
ethane Thol, M., Rutkai, G., Köster, A., Miroshnichenko,S., Wagner, W.,Vrabec, J. and Span, R.,
Equation of state for 1,2-dichloroethane based on a hybrid data set. Molecular Physics 115, 9-12 (2017).
doi.org/10.1080/00268976.2016.1262557
2,2-Dimethyl- Calculation of the thermodynamic properties of 2,2-dimethylbutane using the equation of
butane Gao, K., Wu, J. and Lemmon, E. W., Equations of State for the Thermodynamic Properties
of Three Hexane Isomers: 3-Methylpentane, 2,2-Dimethylbutane, and 2,3 Dimethylbutane.
J. Phys. Chem. Ref. Data 50, 033103 (2021), doi.org/org/10.1063/1.5093644
2,3-Dimethyl- Calculation of the thermodynamic properties of 2,3-dimethylbutane using the equation of
butane Gao, K., Wu, J. and Lemmon, E. W., Equations of State for the Thermodynamic Properties
of Three Hexane Isomers: 3-Methylpentane, 2,2-Dimethylbutane, and 2,3 Dimethylbutane.
J. Phys. Chem. Ref. Data 50, 033103 (2021). doi.org/org/10.1063/1.5093644
Dipropylether Calculation of the thermodynamic properties of dipropylether using the equation of state of
Bonsen, C., Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Thermodynamics, Ruhr-University Bochum, 2002.
Dodecane Calculation of the thermodynamic properties of dodecane (n-dodecane) using the equation of state of
(n-Dodecane) Lemmon, E. W., Huber, M. L., Thermodynamic properties of n-dodecane.
Energy & Fuels 18 (2004), 960-967. doi.org/10.1021/ef034109e
Decamethylcyclo- Calculation of the thermodynamic properties of decamethylcyclopentasiloxane using the equation of state of
pentasiloxane Thol, M., Javed, M. A., Baumhögger, E., Span, R., & Vrabec, J. (2019). Thermodynamic Properties of Dodeca-
methylpentasiloxane,Tetradecamethylhexasiloxane, and Decamethylcyclopentasiloxane. Industrial
Engineering & Chemistry Research, 58(22), 9617–9635. doi.org/10.1021/acs.iecr.9b00608
Decamethyl- Calculation of the thermodynamic properties of decamethyltetrasiloxane using the equation of state of
tetrasiloxane Thol, M., Dubberke, F. H., Baumhögger, E., Vrabec, J., & Span, R. (2017). Speed of sound measurements
and fundamental equations of state for octamethyltrisiloxane and decamethyltetrasiloxane. Journal of
Chemical & Engineering Data, 62(9), 2633–2648. doi.org/10.1021/acs.jced.7b00092
Dodecamethyl- Calculation of the thermodynamic properties of dodecamethylpentasiloxane using the equation of state of
pentasiloxane Thol, M., Javed, M. A., Baumhögger, E., Span, R., & Vrabec, J. (2019). Thermodynamic Properties of Dodeca-
methylpentasiloxane,Tetradecamethylhexasiloxane, and Decamethylcyclopentasiloxane. Industrial
Engineering & Chemistry Research, 58(22), 9617–9635. doi.org/10.1021/acs.iecr.9b00608
Ethane Calculation of the thermodynamic properties of ethane using the equation of state of
Bücker, D., Wagner, W., Reference equation of state for the thermodynamic properties of ethane for temperatures from the melting line to 675 K and pressures up to 900 MPa. J. Phys. Chem. Ref. Data 35, (2006), 205-266. doi.org/10.1063/1.1859286.
Ethanol Calculation of the thermodynamic properties of ethanol using the equation of state of
Schroeder, J. A., Penoncello, S. G., Schroeder, J. S., A fundamental equation of state for ethanol. J. Phys. Chem. Ref. Data 43, 043102 (2014). doi.org/10.1063/1.4895394.
Ethylbenzene Calculation of the thermodynamic properties of ethylbenzene using the equation of state of
Zhou, Y., Wu, J., Lemmon, E. W., Thermodynamic properties of o-xylene, m-xylene, p-xylene, and Ethylbenzene. J. Phys. Chem. Ref. Data 41, 023103 (2012). doi.org/10.1063/1.3703506.
Ethylene Calculation of the thermodynamic properties of ethylene using the equation of state of
Smukala, J., Span, R., Wagner, W., New equation of state for ethylene covering the fluid region from the melting line to 450 K at pressures up to 300 MPa. J. Phys. Chem. Ref. Data 29 (2000), 1053-1121. doi.org/10.1063/1.1329318.
Ethylene oxide Calculation of the thermodynamic properties of ethylene oxide using the equation of state of
Thol, M., Rutkai, G., Köster, A., Kortmann, M., Span, R., Vrabec, J., Corrigendum: Fundamental Equation of State for Ethylene Oxide Based on a Hybrid Dataset, Chem. Eng. Sci.,134:887-890, 2015. doi.org/10.1016/j.ces.2014.07.051
Fluorine Calculation of the thermodynamic properties of fluorine using the equation of state of
de Reuck, K. M., International thermodynamic tables of the fluid state – 11, fluorine. Pergamon-Press, Oxford,1990.
Helium Calculation of the thermodynamic properties of helium using the equation of state of
Ortiz-Vega, D. O., Hall, K. R., Holste, J. C., Harvey, A. H., Lemmon, E. W., An Equation of State for the Thermodynamic Properties of Helium.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Internal Report (IR) NIST IR 8474. https://doi.org/10.6028/NIST.IR.8474, 2023.
Heptane Calculation of the thermodynamic properties of heptane using the equation of state of
Span, R., Wagner, W., Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24 (2003), 41-109.
Tenji, D., Thol, M., Lemmon, E. W., Span, R., Fundamental equation of state for n-heptane, to be submitted to Int. J. Thermophys., 2018.
Hexane Calculation of the thermodynamic properties of hexane using the equation of state of
Span, R., Wagner, W., Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24 (2003), 41-109.
Thol, M., Wang, Y., Lemmon, E. W., Span, R., Fundamental equations of state for hydrocarbons. Part II. n-hexane, to be published, 2019.
Hexamethyl- Calculation of the thermodynamic properties of hexamethyldisiloxane using the equation of
disiloxane Thol, M., Dubberke, F. H., Rutkai, G., Windmann, T., Köster, A., Span, R., & Vrabec, J. (2016). Fundamental
equation of state correlation for hexamethyldisiloxane based on experimental and molecular simulation data.
Fluid Phase Equilibria, 418, 133–151. doi.org/10.1016/j.fluid.2015.09.047
1-Hexene Calculation of the thermodynamic properties of 1-hexene using the equation of state of
Betken, B., Beckmüller, R., Javed, M. A.,Baumhögger, E.,Span, R., Vrabec, J., Thol, M.,
Thermodynamic Properties for 1-Hexene – Measurements and Modeling.
J. of Chem. Thermodyn., 176 (2023), 106881. doi.org/10.1016/j.jct.2022.106881
Hydrogen Calculation of the thermodynamic properties of hydrogen using the equation of state of
Leachman, J. W., Jacobsen, R. T, Penoncello, S. G., Lemmon, E. W., Fundamental equations of state for
parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38 (2009), 721-748.
National Institute of Standards and Technology, Gaithersburg, MD, [online],
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=832374
Hydrogen_short Calculation of the thermodynamic properties of hydrogen using the equation of state of
Nguyen, T.-T.-G., Wedler, C., Pohl, S., Penn, D., Span, R., Trusler, J.P.M., Thol, M., Experimental Speed-of-Sound
Data and a Fundamental Equation of State for Normal Hydrogen Optimized for Flow Measurements.
For comparability with the EoS of Leachmann et al. with H0 and SO calculated at NBP in contrast as published,
applicable only for 140 K < T < 370 K and p < 100 MPa.
J. Chem. Thermodynamics 198 (2024) 107341. doi.org/10.1016/j.jct.2024.107341 as open access
Hydrogen Calculation of the thermodynamic properties of hydrogen chloride using the equation of
chloride Thol, M., Dubberke, F. H., Baumhögger, E., Span, R., and Vrabec, J., (2018). Speed of sound measurements
and a fundamental equation of state for hydrogen chloride. J. Chem. Eng. Data 63 (2018), 2533–2547.
doi.org/10.1021/acs.jced.7b01031.
Hydrogen Calculation of the thermodynamic properties of hydrogen sulfide using the equation of
sulfide Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids.
J. Chem. Eng. Data 51, (2006), 785-850. doi.org/10.1021/je050186n.
Isobutane Calculation of the thermodynamic properties of isobutane using the equation of
Bücker, D., Wagner, W., Reference equation of state for the thermodynamic properties of fluid phase
n-butane and isobutane. J. Phys. Chem. Ref. Data 35 (2006), 929-1020. doi.org/10.1063/1.1901687.
Isobutene Calculation of the thermodynamic properties of isobutene using the equation of
Lemmon, E. W., Ihmels, E. C., Thermodynamic properties of the butenes. Part II. Short fundamental
equations of state. Fluid Phase Equilibria 228-229 (2005), 173-187. doi.org/10.1016/j.fluid.2004.09.004.
Isohexane Calculation of the thermodynamic properties of isohexane using the equation of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids.
J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
Isopentane Calculation of the thermodynamic properties of isopentane using the equation of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids.
J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
Krypton Calculation of the thermodynamic properties of krypton using the equation of state of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
Methane Calculation of the thermodynamic properties of methane using the equation of state of
Setzmann, U., Wagner, W., A new equation of state and tables of the thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 20 (1991), 1061-1155. doi.org/10.1063/1.555898.
Exactly the same equation is given in the book:
Wagner, W., de Reuck, M. International thermodynamic tables of the fluid state – 13, methane. Blackwell Science, Oxford, 1996.
Methanol Calculation of the thermodynamic properties of methanol using the equation of state of
de Reuck, K. M., Craven, R. J. B., International thermodynamic tables of the fluid state – 12, methanol. Blackwell Science, London, 1993.
Methyl dietha- Calculation of the thermodynamic properties of methyl diethanolamine using the equation of
nolamine Neumann, T., Baumhögger, E., Span, R., Vrabec, J., & Thol, M., Thermodynamic properties of methyl die-
thanolamine, Int. J. Thermophys. 43:10 (2022). doi.org/10.1007/s10765-021-02933-7
3-Methyl- Gao, K., Wu, J. and Lemmon, E. W., Equations of State for the Thermodynamic Properties
pentane of Three Hexane Isomers: 3-Methylpentane, 2,2-Dimethylbutane, and 2,3 Dimethylbutane,
J. Phys. Chem. Ref. Data 50, 033103 (2021). doi.org/10.1063/1.5093644
Neon Calculation of the thermodynamic properties of neon using the equation of state of
Katti, R. S., Jacobsen, R. T, Stewart, R. B., Jahangiri, M., Thermodynamic properties for neon for temperatures from the triple point to 700 K at pressures up to 700 MPa. Adv. Cryo. Eng. 31 (1986), 1189-1197.
Thol, M., Beckmueller, R., Weiss, R., Harvey, A. H., Lemmon, E. W., Jacobsen, R. T, Span, R., Thermodynamic properties for neon for temperatures from the triple point to 700 K at pressures to 700 MPa, to be submitted to Int. J. Thermophys., 2019.
Neopentane Calculation of the thermodynamic properties of neopentane using the equation of state of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
Nitrogen Calculation of the thermodynamic properties of nitrogen using the equation of state of
Span, R., Lemmon, E. W., Jacobsen, R. T., Wagner, W., Yokozeki, A., A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. J. Phys. Chem. Ref. Data 29 (2000), 1361-1433. doi.org/10.1063/1.1349047.
Nitrous oxide Calculation of the thermodynamic properties of nitrous oxide using the equation of state of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
Nonane Calculation of the thermodynamic properties of nonane using the equation of state of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850.doi.org/10.1021/je050186n.
n‑Perfluoro- Calculation of the thermodynamic properties of n‑perfluorobutane using the equation of
butane Gao, K., Köster, A., Thol, M., Wu, J. and Lemmon, E. W., Equations of State for the Thermodynamic
Properties of n‑Perfluorobutane, n‑Perfluoropentane, and n‑Perfluorohexane.
Ind. Eng. Chem. Res. 2021, 60, 17207−17227. doi.org/10.1021/acs.iecr.1c02969
n‑Perfluoro- Calculation of the thermodynamic properties of n‑perfluoropentane using the equation of
pentane Gao, K., Köster, A., Thol, M., Wu, J. and Lemmon, E. W., Equations of State for the Thermodynamic
Properties of n‑Perfluorobutane, n‑Perfluoropentane, and n‑Perfluorohexane.
Ind. Eng. Chem. Res. 2021, 60, 17207−17227. doi.org/10.1021/acs.iecr.1c02969
n‑Perfluoro- Calculation of the thermodynamic properties of n‑perfluorohexane using the equation of
hexane Gao, K., Köster, A., Thol, M., Wu, J. and Lemmon, E. W., Equations of State for the Thermodynamic
Properties of n‑Perfluorobutane, n‑Perfluoropentane, and n‑Perfluorohexane.
Ind. Eng. Chem. Res. 2021, 60, 17207−17227. doi.org/10.1021/acs.iecr.1c02969
n-Octane Calculation of the thermodynamic properties of n-octane using the equation of state of
Beckmueller, R., Span, R., , Lemmon, E.W., and Thol, M., A Fundamental Equation of State for the Calculation of Thermodynamic Properties of n-Octane, J. Phys. Chem. Ref. Data 51, 043103 (2022). doi:10.1063/5.0104661.
Octamethylcyclo- Calculation of the thermodynamic properties of octamethylcyclotetrasiloxane using the equation of .
tetrasiloxane Thol, M., Rutkai, G., Köster, A., Dubberke, F. H., Windmann, T., Span, R., & Vrabec, J. (2016).
Thermodynamic properties of Octamethylcyclotetrasiloxane. Journal of Chemical & Engineering
Data, 61(7), 2580–2595. doi.org/10.1021/acs.jced.6b00261.
Octamethyl- Calculation of the thermodynamic properties of octamethyltrisiloxane using the equation of
trisiloxane Thol, M., Dubberke, F. H., Baumhögger, E., Vrabec, J., & Span, R. (2017). Speed of soundmeasurements
and fundamental equations of state for octamethyltrisiloxane and decamethyltetrasiloxane.
Journal of Chemical & Engineering Data, 62(9), 2633–2648. doi.org/10.1021/acs.jced.7b00092
Oxygen Calculation of the thermodynamic properties of oxygen using the equation of
Schmidt, R., Wagner, W., A new form of the equation of state for pure substances and its application
to oxygen. Fluid Phase Equilibria 19 (1985), 175-200. doi.org/10.1016/0378-3812(85)87016-3.
Exactly the same equation is given in the references:
Wagner, W., de Reuck, M. International thermodynamic tables of the fluid state – 9, oxygen.
Blackwell Scientific Publications, Oxford, 1987.
Stewart, R. B., Jacobsen, R. T, Wagner, W., Thermodynamic properties of oxygen from the triple point
to 300 K with pressures to 80 MPa. J. Phys. Chem. Ref. Data 20 (1991), 17–1021. doi.org/10.1063/1.555897.
Pentane Calculation of the thermodynamic properties of pentane using the equation of
Span, R., Wagner, W., Equations of state for technical applications. II. Results for nonpolar fluids.
Int. J. Thermophys. 24 (2003), 41-109.
Thol, M., Uhde, T., Lemmon, E. W., Span, R., Fundamental equations of state for hydrocarbons. Part I. n-pentane, to be published, 2019.
Phenol Calculation of the thermodynamic properties of phenol using the equation of state of
Bonsen, C., Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Thermodynamics, Ruhr-University Bochum, 2002.
Propane Calculation of the thermodynamic properties of propane using the equation of state of
Lemmon, E. W., McLinden, M. O., Wagner, W., Thermodynamic properties of propane. III. A reference equation of state for temperatures from the melting line to 650 K and pressures up to 1000 MPa. J. Chem. Eng. Data 54 (2009), 3141-3180. doi.org/10.1021/je900217v
Propylene Calculation of the thermodynamic properties of propylene using the equation of state of
Lemmon, E. W., McLinden, M. O., Wagner, W., Overhoff, U., to be submitted to J. Phys. Chem. Ref. Data 2021.
Propylene Glycol Calculation of the thermodynamic properties of propylene glycol using the equation of state of
Eisenbach, T., Scholz, C., Span, R., Christancho, D., Lemmon, E. W., & Thol, M., Speed-of-sound measurements and a fundamental equation of state for propylene glycol. J. Phys. Chem. Ref. Data, 50(2), 023105, (2021). doi.org/10.1063/5.0050021
Propylbenzene Calculation of the thermodynamic properties of propylbenzene using the equation of state of
Bonsen, C., Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Thermodynamics, Ruhr-University Bochum, 2002.
R22 Calculation of the thermodynamic properties of R22 using the equation of state of
Wagner, W., Marx, V., Pruß, A., A new equation of state for chlorodifluoromethane (R22) covering the fluid region from 116 K to 1100 K at pressures up to 200 MPa. Int. J. Refrigeration 16 (1993), 373-389.
R32 Calculation of the thermodynamic properties of R32 using the equation of state of
Tillner-Roth, R., Yokozeki, A., An international standard equation of state for difluoromethane (R-32) for temperatures from the triple point at 136.4 K to 435 K at pressures up to 70 MPa. J. Phys. Chem. Ref. Data 26 (1997), 1273-1328. doi.org/10.1063/1.556002.
R41 Calculation of the thermodynamic properties of R41 using the equation of state of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
R123 Calculation of the thermodynamic properties of R123 using the equation of state of
Younglove, B. A., McLinden, M. O., An international standard equation of state for the thermodynamic properties of refrigerant 123 (2,2-dichlor-1,1,1-trifluoroethane). J. Phys. Chem. Ref. Data 23 (1994), 731-779. doi.org/10.1063/1.555950.
R124 Calculation of the thermodynamic properties of R124 using the equation of state of
de Vries, B., Tillner-Roth, R., Baehr, H. D., The thermodynamic properties of HFC-124. 19th International Congress of Refrigeration, Den Haag, The Netherlands (1995), 582-589.
R125 Calculation of the thermodynamic properties of R125 using the equation of state of
Piao, C. C., Noguchi, M., An international standard equation of state for the thermodynamic properties of HFC-125 (pentafluoroethane). J. Phys. Chem. Ref. Data 27 (1998), 775-806. doi.org/10.1063/1.556021
Lemmon, E. W., Jacobsen, R. T, A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HFC-125). J. Phys. Chem. Ref. Data 34 (2005), 69-108. doi.org/10.1063/1.1797813
R134a Calculation of the thermodynamic properties of R134a using the equation of state of
Tillner-Roth, R., Baehr, H. D., An international standard equation of state for the thermodynamic properties of 1,1,1,2-tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K at pressures up to 70 MPa. J. Phys. Chem. Ref. Data 23 (1994), 657-729. doi.org/10.1063/1.555958
R141b Calculation of the thermodynamic properties of R141b using the equation of state of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
R142b Calculation of the thermodynamic properties of R142b using the equation of state of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
R152a Calculation of the thermodynamic properties of R152a using the equation of state of
Outcalc, S. L., Mc Linden, M. O., A modified Benedict-Webb-Rubin equation of state for the thermodynamic properties of R152a (1,1-difluoroethane). J. Phys. Chem. Ref. Data 25 (1996), 605-636. doi.org/10.1063/1.555979.
R-1132(E) Calculation of the thermodynamic properties of R-1132(E) using the equation of state of
Akasaka, R. and Lemmon, E. W., A Helmholtz Energy Equation of State for Calculations of Thermodynamic Properties of trans-1,2-Difluoroethene. Int. J. Thermophys. (2024) 45:174. doi.org/10.1007/s10765-024-03447-8
R245fa Akasaka, R., Zhou, Y., and Lemmon, E.W., A Fundamental Equation of State for 1,1,1,3,3-Pentafluoropropane (R-245fa), J. Phys. Chem. Ref. Data, 44(1):1-11, 2015. doi.org/10.1063/1.4913493
R1224yd(Z) Calculation of the thermodynamic properties of R1224yd(Z) using the equation of state of
Akasaka, R., Lemmon, E.W., A Helmholtz energy equation of state for cis-1-chloro-2,3,3,3-Tetrafluoropropene (R-1224yd(Z)), Int. J. Thermophys. (2023) 44:166. doi.org/10.1007/s10765-023-03266-3.
R1233zd(E) Calculation of the thermodynamic properties of R1233zd(E) using the equation of state of
Akasaka, R., Lemmon, E.W., An International Standard Formulation for trans-1-Chloro-3,3,3-trifluoroprop-1-ene [R1233zd(E)] Covering Temperatures from the Triple-Point Temperature to 450 K and Pressures up to 100 MPa, J. Phys. Chem. Ref. Data 51, 023101 (2022). doi.org/10.1063/5.0083026
R1234yf Calculation of the thermodynamic properties of R1234yf using the equation of state of
Lemmon, E.W. and Akasaka, R., An International Standard Formulation for 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) Covering Temperatures from the Triple Point Temperature to 410 K and Pressures Up to 100 MPa, Int. J. Thermophys. (2022) 43:119, doi.org/10.1007/s10765-022-03015-y
R1234ze(E) Calculation of the thermodynamic properties of R1234ze(E) using the equation of state of
Thol, M. and Lemmon, E.W., Equation of State for the Thermodynamic Properties of trans-1,3,3,3-Tetrafluoropropene [R1234ze(E)], Int. J. Thermophys., 37:28, 2016. doi.org/10.1007/s10765-016-2040-6
R1234ze(Z) Calculation of the thermodynamic properties of R1234ze(Z) using the equation of state of
Akasaka, R. and Lemmon, E.W., Fundamental Equations of State for cis-1,3,3,3-Tetrafluoropropene [R-1234ze(Z)] and 3,3,3-Trifluoropropene (R-1243zf), J. Chem. Eng. Data 2019, 64, 11, 4679–4691. doi.org/10.1021/acs.jced.9b00007
R1243zf Calculation of the thermodynamic properties of R1243zf using the equation of state of
Akasaka, R. and Lemmon, E.W., Fundamental Equations of State for cis-1,3,3,3-Tetrafluoropropene [R-1234ze(Z)] and 3,3,3-Trifluoropropene (R-1243zf), J. Chem. Eng. Data 2019, 64, 11, 4679–4691. doi.org/10.1021/acs.jced.9b00007
R1336mzz(E) Calculation of the thermodynamic properties of R1336mzz(E) using the equation of state of
Akasaka, R., Huber, M.L, Simoni, L. D, Lemmon, E.W, A Fundamental Equation of State for trans-1,1,1,4,4,4-Hexafluoro-2-butene [R1336mzz(E)] and an Auxiliary Extended Corresponding States Model for the Transport Properties, Int. J. Thermophys. (2023) 44:50. doi.org/10.1007/s10765-022-03143-5
R1336mzz(Z) Calculation of the thermodynamic properties of R1336mzz(Z) using the equation of state of
McLinden, M. and Akasaka, R., Thermodynamic Properties of cis-1,1,1,4,4,4-hexafluorobutene [R-1336mzz(Z)]: Vapor Pressure, (p, <rho>, T) Behavior, and Speed of Sound Measurements and Equation of State, J. Chem. Eng. Data (2020), 65, 4201-4214. doi.org/10.1021/acs.jced.9b01198
Sulfur dioxide Calculation of the thermodynamic properties of sulfur dioxide using the equation of state of
Gao, K., Wu, J., Zhang, P., Lemmon, E. W., A Helmholtz energy equation of state for sulfur dioxide, J. Chem. Eng. Data 61 (2016), 2859-2872. doi.org/10.1021/acs.jced.6b00195
Sulfur Calculation of the thermodynamic properties of sulfur hexafluoride using the equation of state of
hexafluoride Guder, C., Wagner, W., A reference equation of state for the thermodynamic properties
of sulfur hexafluoride (SF6) for temperatures from the melting line to 625 K and pres-
sures up to 150 MPa. J. Phys Chem Ref. Data 38, (2009), 33-94. doi.org/10.1063/1.3037344.
Tetradecamethyl- Calculation of the thermodynamic properties of tetradecamethylhexasiloxane using the equation of state of
hexasiloxane Thol, M., Javed, M. A., Baumhögger, E., Span, R., & Vrabec, J. (2019). Thermodynamic Properties of Dodeca-
methylpentasiloxane,Tetradecamethylhexasiloxane, and Decamethylcyclopentasiloxane. Industrial
Engineering & Chemistry Research, 58(22), 9617–9635. doi.org/10.1021/acs.iecr.9b00608
Tetrahydrofuran Calculation of the thermodynamic properties of Tetrahydrofuran (THF) using the equation of state of
Fiedler, F., Karog, J., Lemmon, E. W. and Thol, M., Fundamental Equation of State for Fluid Tetrahydrofuran. Int. J. Thermophys. (2024), 44:153. doi.org/10.1007/s10765-023-03258-3
Toluene Calculation of the thermodynamic properties of toluene using the equation of state of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
Water Calculation of the thermodynamic properties of water using the equation of state of
Wagner, W., Pruß, A., The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31 (2002), 387-535. doi.org/10.1063/1.1461829.
Heavy water Calculation of the thermodynamic properties of heavy water using the equation of state of
Herrig, S., Thol, M., Harvey, A. H., Lemmon, E. W., A reference equation of state for heavy water. J. Phys. Chem Ref. Data 47, 043102 (2018). doi.org/10.1063/1.5053993
Xenon Calculation of the thermodynamic properties of xenon using the equation of state of
Lemmon, E. W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785-850. doi.org/10.1021/je050186n.
on demand Zhou, Y., Wu, J., Lemmon, E. W., Thermodynamic properties of o-xylene, m-xylene, p-xylene,
for example and Ethylbenzene. J. Phys. Chem. Ref. Data 41, 023103 (2012). doi.org/10.1063/1.3703506.
Viscosity
Ammonia Monogenidou, S.A., Assael, M.J., and Huber, M.L., Reference Correlation of the Viscosity of Ammonia from the Triple Point to 700 K and up to 50 MPa. J. Phys. Chem. Ref. Data, 47(2): 023102 (2018). doi.org/10.1063/1.5036724
Argon Younglove, B. A., Hanley, H. J. M., The viscosity and thermal conductivity coefficients of gaseous and liquid argon. J. Phys. Chem. Ref. Data 15 (1986), 1323-1337.
Lemmon, E. W., Jacobsen, R. T, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25 (2004), 21-69. doi.org/10.1023/B:IJOT.0000022327.04529.f3.
Butane Vogel, E., Küchenmeister, C., Bich, E., Viscosity correlation for n-butane in the fluid region. High Temperatures – High Pressures 31 (1999), 173-186.
Herrmann, S., Vogel, E., New formulation for the viscosity of n-butane. J. Phys. Chem. Ref. Data 47, 013104 (2018). doi.org/10.1063/1.5020802
Carbon Laesecke, A. and Muzny, C.D., Reference Correlation for the Viscosity of Carbon Dioxide. J. Phys. Chem. Ref.
dioxide Data 46, 013107 (2017). doi.org/10.1063/1.4977429.
Decane Klein, S. A., McLinden, M. O., Laesecke, A., An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrigeration 20 (1997), 208-217.
Huber, M. L., Laesecke, A., Xiang, H. W., Viscosity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane, Fluid Phase Equilib., 224 (2004), 263-270. doi.org/10.1016/j.fluid.2005.03.008
Ethane Hendl, S., Millat, J., Vogel, E., Vesovic, V., Wakeham, W. A., Luettmer-Stratmann, J., Sengers, J. V., Assael, M. J., The transport properties of ethane. I. Viscosity. Int. J. Thermophys. 15 (1994), 1-31. doi.org/10.1007/BF01439245
Ethanol Sotiriadou,S., Ntonti, E.,Velliadou, D., Antoniadis, K.D.,·Assael, M.J., Huber, M.L., Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures Up to 102 MPa, Int. J. Thermophys. 44:40 (2023). doi.org/10.1007/s10765-022-03149-z
Ethene Holland, P. M., Eaton, B. E., Hanley, H. J. M., A correlation of the viscosity and thermal conductivity data of gaseous and liquid ethylene. J. Phys. Chem. Ref. Data 12 (1983), 917-932. doi.org/10.1063/1.555701
Heptane Klein, S. A., McLinden, M. O., Laesecke, A., An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrigeration 20 (1997), 208-217.
Michailidou, E. K., Assael, M. J., Huber, M. L., Abdulagatov, I. M., Perkins, R. A., Reference correlation of the viscosity of n-heptane from the triple point to 600 K and up to 248 MPa. J. Phys. Chem. Ref. Data, 43, 023103 (2014), doi.org/10.1063/1.4875930
Hexane Klein, S. A., McLinden, M. O., Laesecke, A., An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrigeration 20 (1997), 208-217.
Michailidou, E. K., Assael, M. J., Huber, M. L., Perkins, R. A., Reference correlation of the viscosity of n-hexane from the triple point to 600 K and up to 100 MPa," J. Phys. Chem. Ref. Data 42, 033104 (2013), doi.org/10.1063/1.4818980
Hydrogen Muzny, C.D., Huber, M.L., and Kazakov, A.F., Correlation for the viscosity of normal hydrogen obtained
from symbolic regression. J. Chem. Eng. Data, 58:969-979, 2013. doi.org/10.1021/je301273j
Isobutane Vogel, E., Küchenmeister, C., Bich, E., Viscosity correlation for isobutane over wide ranges of the fluid region. Int. J. Thermophys. 21 (2000), 343-356. doi.org/10.1023/A:1006623310780.
Methane Friend, D. G., Ely, J. F., Ingham, H., Thermophysical properties of methane. J. Phys. Chem. Ref. Data 18 (1989), 583-638. doi.org/10.1063/1.555828.
Methanol Xiang, H. W., Laesecke, A., and Huber, M.L., A New Reference Correlation for the Viscosity of Methanol. J. Phys. Chem. Ref. Data 35, 1597 (2006), doi:10.1063/1.2360605.
Nitrogen Stephan, K., Krauss, R., Laesecke, A., Viscosity and thermal conductivity of nitrogen for a wide range of fluid states. J. Phys. Chem. Ref. Data 16 (1987), 993-1023.
Lemmon, E. W., Jacobsen, R. T, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25 (2004), 21–69. doi.org/10.1023/B:IJOT.0000022327.04529.f3.
Nonane Klein, S. A., McLinden, M. O., Laesecke, A., An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrigeration 20 (1997), 208-217.
Huber, M. L., Laesecke, A., Xiang, H. W., Viscosity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilib. 224 (2004), 263-270. doi.org/10.1016/j.fluid.2005.03.008
Octane Klein, S. A., McLinden, M. O., Laesecke, A., An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrigeration 20 (1997), 208-217.
Huber, M. L., Laesecke, A., Xiang, H. W., Viscosity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilib. 224 (2004), 263-270. doi.org/10.1016/j.fluid.2005.03.008
Oxygen Laesecke, A., Krauss, R., Stephan, K., Wagner, W., Transport properties of fluid oxygen. J. Phys. Chem. Ref. Data 19 (1990), 1089-1122.
Lemmon, E. W., Jacobsen, R. T, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25 (2004), 21-69. doi.org/10.1023/B:IJOT.0000022327.04529.f3.
Pentane Klein, S. A., McLinden, M. O., Laesecke, A., An improved extended corresponding states method for estimation of viscosity for pure refrigerants and mixtures. Int. J. Refrigeration 20 (1997), 208-217. doi.org/10.1016/S0140-7007(96)00073-4.
Quinones-Cisneros, S. E., Deiters, U. K., Generalization of the friction theory for viscosity modelling. J. Phys. Chem. B, 110 (2006), 12820-12834. doi.org/10.1021/jp0618577
Propane Vogel, E., Küchenmeister, C., Bich, E., Laesecke, A., Reference correlation of the viscosity of Propane. J. Phys. Chem. Ref. Data 27 (1998), 947-970.
Vogel, E., Herrmann, S., New formulation for the viscosity of propane. J. Phys. Chem. Ref. Data 45 (2016), 043103, doi.org/10.1063/1.4966928
Propylene Huber, M. H., Laesecke, A., Perkins, R. A., Model for the viscosity and thermal conductivity of refrigerants, including a new correlation for the viscosity of R134a. Ind. Eng. Chem. Res. 42 (2003), 3163-3178. doi.org/10.1021/ie0300880.
Propylene Velliadou, D., Antoniadis, K. D., Assael, M. J., Huber, M. L., Reference Correlation for Viscosity of Propane‑1,2‑diol
Glycol (Propylene Glycol) from the Triple Point to 452 K and up to 245 MPa. Int. J. Thermophys. (2022) 43:42.
doi.org/10.1007/s10765-021-02970-2.
R22 Klein, S. A., McLinden, M. O., Laesecke, A., An improved extended corresponding states method
for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrigeration 20 (1997), 208-217.
doi.org/10.1016/S0140-7007(96)00073-4.
R32 Klein, S. A., McLinden, M. O., Laesecke, A., An improved extended corresponding states method
for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrigeration 20 (1997), 208-217.
doi.org/10.1016/S0140-7007(96)00073-4.
R123 Tanaka, Y., Sotani, T., Thermal conductivity and viscosity of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123). Int. J. Thermophys. 17 (1996), 293-328. doi.org/10.1007/BF01443394.
R124 Klein, S. A., McLinden, M. O., Laesecke, A., An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrigeration 20 (1997), 208-217. doi.org/10.1016/S0140-7007(96)00073-4.
R125 Huber, M. H., Laesecke, A., Perkins, R. A., Model for the viscosity and thermal conductivity of refrigerants, including a new correlation for the viscosity of R134a. Ind. Eng. Chem. Res. 42 (2003), 3163-3178. doi.org/10.1021/ie0300880.
R134a Huber, M. H., Laesecke, A., Perkins, R. A., Model for the viscosity and thermal conductivity of refrigerants, including a new correlation for the viscosity of R134a. Ind. Eng. Chem. Res. 42 (2003), 3163-3178. doi.org/10.1021/ie0300880.
R141b Huber, M. H., Laesecke, A., Perkins, R. A., Model for the viscosity and thermal conductivity of refrigerants, including a new correlation for the viscosity of R134a. Ind. Eng. Chem. Res. 42 (2003), 3163-3178. doi.org/10.1021/ie0300880.
R142b Huber, M. H., Laesecke, A., Perkins, R. A., Model for the viscosity and thermal conductivity of refrigerants, including a new correlation for the viscosity of R134a. Ind. Eng. Chem. Res. 42 (2003), 3163-3178. doi.org/10.1021/ie0300880.
R152a Krauss, R., Weiss, V. C., Edison, T. A., Sengers, J. V., Stephan, K., Transport properties of 1,1-difluoroethane (R-152a). Int. J. Thermophys. 17 (1996), 731-757. doi.org/10.1007/BF01439187.
R245fa Huber, M. H., Laesecke, A., Perkins, R. A., Model for the viscosity and thermal conductivity of refrigerants, including a new correlation for the viscosity of R134a. Ind. Eng. Chem. Res. 42 (2003), 3163-3178. doi.org/10.1021/ie0300880.
R1224yd(Z) Alam, Md. J., Yamaguchi, K., Hori, Y., Kariya, K., Miyara, A., Measurement of thermal conductivity and viscosity of cis-1-chloro-2,3,3,3-tetrafluoropropene (R-1224yd(Z)), Int. J. Refrig., 104 (2019) 221–228., doi.org/10.1016/j.ijrefrig.2019.05.033 0140-7007.
R1233zd(E) Meng, X., Wen, C.. and Wu, J., Measurement and Correlation of the Liquid Viscosity of trans-1-Chloro-3,3,3-trifluoropropene (R1233zd(E)), J. Chem. Thermodyn. 2018, 62, 140−145. doi.org/10.1016/j.jct.2018.04.001.
R1234yf Huber, M.L. and Assael, M.J., Correlations for the Viscosity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,2,2,2-Tetrafluoropropene (R1234ze(E)), Int. J. Refrigeration, 71:39-45, 2016. doi.org/10.1016/j.ijrefrig.2016.08.007.
R1234ze(E) Huber, M.L. and Assael, M.J., Correlations for the Viscosity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,2,2,2-Tetrafluoropropene (R1234ze(E)), Int. J. Refrigeration., 71:39-45, 2016. doi.org/10.1016/j.ijrefrig.2016.08.007.
R1336mzz(E) Mondal, D., Kariya, K., Tuhin, A. R., Amakusa N., Miyara, A., Viscosity measurement for trans-1,1,1,4,4,4-hexafluoro-2-butene (R1336mzz(E)) in liquid and vapor phases, Int. J. Refrig., 133 (2022) 267–275.,doi.org/10.1016/j.ijrefrig.2021.10.006.
Water Sengers, J. V., Kamgar-Parsi, B., Representative equations for the viscosity of water substance. J. Phys. Chem. Ref. Data 13 (1984), 185-205.
IAPWS R12-08: Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance (September 2008)
Heavy water IAPWS R17-20: Release on the IAPWS Formulation 2020 for the Viscosity of Heavy Water
On request.
Thermal conductivity
Ammonia Monogenidou, S.A., Assael, M.J., and Huber, M.L., Reference Correlations for Thermal Conductivity of Ammonia from the Triple Point to 680 K and up to 80 MPa, (with emperical ∆λc). J. Phys. Chem. Ref. Data 47, 043101 (2018). doi.org/10.1063/1.5053087.
Argon Perkins, R. A., Friend, D. G., Roder, H. M., Nieto de Castro, C. A., Thermal conductivity surface of argon: A fresh analysis. Int. J. Thermophys. 12 (1991), 965-984.
Lemmon, E. W., Jacobsen, R. T, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25 (2004), 21-69.doi.org/10.1023/B:IJOT.0000022327.04529.f3.
Butane Younglove, B. A., Ely, J. F., Thermophysical properties of fluids. II. Methane, ethane, propane, isobutane, and normal butane. J. Phys. Chem. Ref. Data 16 (1987), 577-798.
Perkins, R.A, Ramires, M.L.V., Nieto de Castro, C.A., and Cusco, L., Measurement and Correlation of the Thermal Conductivity of Butane from 135 K to 600 K at Pressures to 70 MPa. J. Chem. Eng. Data, 47(5):1263-1271, 2002.
doi.org/10.1021/je0101202
Carbon Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R., Millat, J.: The Transport Properties of
dioxide Carbon Dioxide. J. Phys. Chem. Ref. Data 19 (1990), 763-808.
On request, with emperical ∆λc: Huber, M. L., Sykioti, E. A., Assael, M. J. and Perkins, R. A. Reference Correlation
of the Thermal Conductivity ofCarbon Dioxide from the Triple Point to 1100 K and up to 200 MPa. J. Phys. Chem.
Ref. Data 45, 013102 (2016). doi.org/10.1063/1.4940892.
Ethane Friend, D. G., Ingham, H., Ely, J. F., Thermophysical properties of ethane. J. Phys. Chem. Ref. Data 20 (1991), 275-347. doi.org/10.1063/1.555881.
Ethanol Assael, M.J., Skioti, A., Huber, M.L., and Perkins, R.A., Reference Correlations of the Thermal Conductivity of Ethanol from the Triple Point to 600 K and up to 245 MPa, (with emperical ∆λc). Int. J. Thermophys., 44:40 (2023). doi.org/10.1007/s10765-022-03149-z
Ethene Assael, M. J., Koutian, A., Huber, M. L., Perkins, R. A., Reference correlations of the thermal conductivity of ethylene and propylene, (with emperical ∆λc). J. Phys. Chem. Ref. Data 45, 033104 (2016). doi.org/10.1063/1.4958984
Hydrogen Assael, M.J., Assael, J.-A.M., Huber, M.L., Perkins, R.A., and Takata, Y., Correlation of the thermal conductivity
of normal and parahydrogen from the triple point to 1000 K and up to 100 MPa, (with emperical ∆λc).
J. Phys. Chem. Ref. Data, 40(3), 033101 (2011). doi.org/10.1063/1.3606499
Isobutane Younglove, B. A., Ely, J. F., Thermophysical properties of fluids. II. Methane, ethane, propane, isobutane, and normal butane. J. Phys. Chem. Ref. Data 16 (1987), 577-798.
Perkins, R. A., Measurement and correlation of the thermal conductivity of isobutane from 114 K to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47 (2003), 1272-1279. doi.org/10.1021/je010121u.
Methane Friend, D. G., Ely, J. F., Ingham, H., Thermophysical properties of methane. J. Phys. Chem. Ref. Data 18 (1989), 583-638. doi.org/10.1063/1.555828.
Methanol Sykioti, E. A., Assael, M. J., Huber, M. L. and R. A. Perkins, Reference Correlation of the Thermal Conductivity of Methanol from the Triple Point to 660 K and up to 245 MPa, with emperical ∆λc. J. Phys. Chem. Ref. Data 42, 043101 (2013); doi.org/ 10.1063/1.4829449.
Nitrogen Stephan, K., Krauss, R., Laesecke, A., Viscosity and thermal conductivity of nitrogen for a wide range of fluid states. J. Phys. Chem. Ref. Data 16 (1987), 993-1023.
Lemmon, E. W., Jacobsen, R. T, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int.J. Thermophys. 25 (2004), 21-69. doi.org/10.1023/B:IJOT.0000022327.04529.f3.
Oxygen Laesecke, A., Krauss, R., Stephan, K., Wagner, W., Transport properties of fluid oxygen. J. Phys. Chem. Ref. Data 19 (1990), 1089-1122.
Lemmon, E. W., Jacobsen, R. T, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25 (2004), 21-69. doi.org/10.1023/B:IJOT.0000022327.04529.f3..
Pentane McLinden, M. O., Klein, S. A., Perkins, R. A., An extended corresponding states method for the thermal conductivity of pure refrigerants and refrigerant mixtures. Int. J. Refrigeration 23 (2000), 43-63. doi.org/10.1016/S0140-7007(99)00024-9.
Propane Ramires, M. L. V., Nieto de Castro, C. A., Perkins, R. A., An improved empirical correlation for the thermal conductivity of propane. Int. J. Thermophys. 21 (2000), 639-650.
Marsh, K., Perkins, R., Ramires, M. L. V., Measurement and correlation of the thermal conductivity of propane from 86 to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47 (2002), 932-940. doi.org/10.1021/je010001m
Propylene Assael, M.J., Koutian, A., Huber, M.L., and Perkins, R.A., Reference Correlations of the Thermal Conductivity of Ethylene and Propylene, (with emperical ∆λc). J. Phys. Chem. Ref. Data, 45(3), 033104, 2016. doi.org/10.1063/1.4958984
R22 McLinden, M. O., Klein, S. A., Perkins, R. A., An extended corresponding states method for the thermal conductivity of pure refrigerants and refrigerant mixtures. Int. J. Refrigeration 23 (2000), 43-63. doi:10.1016/S0140-7007(99)00024-9.
R32 McLinden, M. O., Klein, S. A., Perkins, R. A., An extended corresponding states method for the thermal conductivity of pure refrigerants and refrigerant mixtures. Int. J. Refrigeration 23 (2000), 43-63. doi.org/10.1016/S0140-7007(99)00024-9.
R123 Laesecke, A., Perkins, R. A., Howley, J. B., An improved correlation for the thermal conductivity of HCFC 123 (2,2-dichloro-1,1,1-triluoroethane). Int. J. Refrigeration 19 (1996), 231-238. doi.org/10.1016/0140-7007(96)00019-9.
R124 McLinden, M. O., Klein, S. A., Perkins, R. A., An extended corresponding states method for the thermal conductivity of pure refrigerants and refrigerant mixtures. Int. J. Refrigeration 23 (2000), 43-63. doi.org/10.1016/S0140-7007(99)00024-9.
Huber, M. L., Laesecke, A., Perkins, R. A., Model for the viscosity and thermal conductivity of refrigerants, including a new correlation for the viscosity of R134a. Ind. Eng. Chem. Res. 42 (2003), 3163-3178. doi.org/10.1021/ie0300880.
R125 McLinden, M. O., Klein, S. A., Perkins, R. A., An extended corresponding states method for the thermal conductivity of pure refrigerants and refrigerant mixtures. Int. J. Refrigeration 23 (2000), 43-63. doi.org/10.1016/S0140-7007(99)00024-9.
Perkins, R. A., Huber, M. L., Measurement and correlation of the thermal conductivity of pentafluoroethane (R125) from 190 K to 512 K at pressures to 70 MPa. J. Chem. Eng. Data 51 (2006), 898-904. doi.org/10.1021/je050372t.
R134a Huber, M. L., Laesecke, A., Perkins, R. A., Model for the viscosity and thermal conductivity of refrigerants, including a new correlation for the viscosity of R134a, (without ∆λc). Ind. Eng. Chem. Res. 42 (2003), 3163-3178. doi.org/10.1021/ie0300880.
R152a Krauss, R., Weiss, V. C., Edison, T. A., Sengers, J. V., Stephan, K., Transport properties of 1,1-difluoroethane (R-152a). Int. J. Thermophys. 17 (1996), 731-757. doi.org/10.1007/BF01439187.
R1224yd(Z) Alam, Md. J., Yamaguchi, K., Hori, Y., Kariya, K., Miyara, A., Measurement of Thermal Conductivity and Viscosity of cis-1-chloro-2,3,3,3-tetrafluoropropene (R-1224yd(Z)), Int. J. Refrig., 104 (2019) 221–228., doi.org/10.1016/j.ijrefrig.2019.05.033 0140-7007.
R1233zd(E) Perkins, R.A., Huber, M.L. and Assael, M.J., Measurement and Correlation of the Thermal Conductivity of trans-1-Chloro-3,3,3-trifluoropropene (R1233zd(E)), (without ∆λc). J. Chem. Eng. Data 2017, 62, 2659−2665. doi.org/10.1021/acs.jced.7b00106 .
R1234yf Perkins, R. A. and Huber, M.L., Measurement and Correlation for the Thermal Conductivity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,2,2,2-Tetrafluoropropene (R1234ze(E)), (with emperical ∆λc). J. Chem. Eng. Data 56 (2011), 4868-4874. doi.org/10.1021/je200811n
R1234ze(E) Perkins, R. A. and Huber, M.L., Measurement and Correlation for the Thermal Conductivity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,2,2,2-Tetrafluoropropene (R1234ze(E)), (with emperical ∆λc). J. Chem. Eng. Data 56 (2011), 4868-4874. doi.org/10.1021/je200811n
R1336mzz(E) Mondal, D., Kariya, K., Tuhin, A. R., Amakusa N., Miyara, A., Thermal conductivity measurement and correlation at saturation condition of HFO refrigerant trans-1,1,1,4,4,4-hexafluoro-2-butene (R1336mzz(E), Int. J. Refrig., 129 (2022) 109-117., doi.org/10.1016/j.ijrefrig.2021.05.005 .
Water Sengers, J. V., Watson, J. T. R., Basu, R. S., Kamgar-Parsi, B., Hendricks, R. C., Representative equations for the thermal conductivity of water substance. J. Phys. Chem. Ref. Data 13 (1984), 893-933.
Heavy water IAPWS R4-84(2007): Revised Release on Viscosity and Thermal Conductivity of Heavy Water Substance
On request.
Surface tension
The surface tension of all substances is calculated on the basis of the comprehensive investigations published in
Mulero, A., Cachadina, I., and Parra, M.I., Recommended Correlations for the Surface Tension of Common Fluids. J. Phys. Chem. Ref. Data, 41(4), 043105, 2012. doi.org/10.1063/1.4768782
Mulero, A. and Cachadiña, I., Recommended Correlations for the Surface Tension of Several Fluids Included in the REFPROP Program, J. Phys. Chem. Ref. Data, 43, 023104, 2014. doi.org/10.1063/1.4878755
Cachadiña, I., Mulero, A., and Tian, J., Surface Tension of Refrigerants-Selection of Data and Recommended
Correlations, J. Phys. Chem. Ref. Data, 44(2), 023104, 2015. doi.org.10.1063/1.4921749
Kondou, C., Nagata, R., Nii, N., Koyama, S., Higashi, Y., Surface Tension of Low GWP Refrigerants R1243zf, R1234ze(Z), and R1233zd(E), Int. J. Refrig., 53, 80-89, (May 2015). doi.org/10.1016/j.ijrefrig.2015.01.005