English (UK)deutsch

References for the Equations of State used

 

Marx, V., Pruß, A., Wagner, W. Neue Zustandsgleichungen für R12, R22, R11 und R113 – Beschreibung des thermodynamischen Zustandsverhaltens bei Temperaturen bis 525 K und Drücken bis 200 MPa. VDI-Fortschritt-Berichte, Reihe 19, Nr. 57, VDI-Verlag, Düsseldorf, 1992.

Acetone

Lemmon, E.W., Span, R. Short Fundamental Equations of State for 20 Industrial Fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Ammonia

Tillner-Roth, R., Harms-Watzenberg, F., Baehr, H.D. Eine neue Fundamentalgleichung für Ammoniak. DKV-Tagungsbericht 20 (1993), 167 – 181.

Argon

Tegeler, Ch., Span, R., Wagner, W. A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28 (1999), 779 – 850.

Benzene

Bonsen, C. Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Ruhr-Universität Bochum (2002).

Butane

Bücker, D., Wagner, W. Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane. J. Phys. Chem. Ref. Data 35 (2006), 929 – 1020.

Butene
(1-Buten)

Lemmon, E.W., Ihmels, E.C. Thermodynamic properties of the butenes Part II. Short fundamental equations of state. Fluid Phase Equilibria 228 – 229 (2004), 173 – 187.

Butene
(cis-2-Butene)

Lemmon, E.W., Ihmels, E.C. Thermodynamic properties of the butenes Part II. Short fundamental equations of state. Fluid Phase Equilibria 228 – 229 (2004), 173 – 187.

Butene
(trans-2-Butene)

Lemmon, E.W., Ihmels, E.C. Thermodynamic properties of the butenes Part II. Short fundamental equations of state. Fluid Phase Equilibria 228 – 229 (2004), 173 – 187.

Carbon dioxide

Span, R., Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25 (1996), 1509 – 1596.

Carbon monoxide

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Carbonylsulfide

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Chlorine

Angus, S., Amstrong, B., de Reuck, K.M. International thermodynamic tables of the fluid state: Vol. 8 – chlorine. Pergamon Press, Oxford, 1985.

Cyclohexane

Penoncello, S.G., Jacobsen, R.T, Goodwin, A.R.H. Thermodynamic property formulation for cyclohexane. Int. J. Thermophys. 16 (1995), 519 – 531.

Cyclopentane

Bonsen, C. Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Ruhr-Universität Bochum (2002).

Decane

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Diethylether

Bonsen, C. Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Ruhr-Universität Bochum (2002).

2,3-Dimethylbutane

Bonsen, C. Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Ruhr-Universität Bochum (2002).

Dodecane
(n-Dodecane)

Lemmon, E.W., Huber, M.L. Thermodynamic properties of n-dodecane. Energy & Fuels 18 (2004), 960 – 967.

Ethane

Bücker, D., Wagner, W. A Reference equation of state for the thermodynamic properties of ethane for temperatures from the melting line to 675 K and pressures up to 900 MPa. J. Phys. Chem. Ref. Data 35 (2006), 205 – 266.

Ethanol

Dillon, H.E., Penoncello, S.G.: A fundamental equation for calculation of the thermodynamic properties of ethanol. Int. J. Thermophys. 25 (2004), 321 – 335.

Ethylbenzene

Bonsen, C. Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Ruhr-Universität Bochum (2002).

Ethylene

Smukala, J., Span, R., Wagner, W. New equation of state for ethylene covering the fluid region from the melting line to 450 K at pressures up to 300 MPa. J. Phys. Chem. Ref. Data 29 (2000), 1053 – 1121.

Fluorine

de Reuck, K.M. International thermodynamic tables of the fluid state: Vol. 11 – fluorine. Pergamon Press, Oxford, 1990.

Helium

McCarty R.D., Arp, V.D. A new wide range equation of state for helium. Adv. Cryo. Eng. 35 (1990), 1465 – 1475.

Heptane

Span, R., Wagner, W. Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24 (2003), 41 – 109.

Hexane

Span, R., Wagner, W.: Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24 (2003), 41 – 109.

Hydrogen

Leachman, J.W., Jacobsen, R.T, Penoncello, S.G., Lemmon, E.W. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data, 38 (2009), 721 – 748.

Hydrogen sulfide

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Isobutane

Bücker, D., Wagner, W. Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane. J. Phys. Chem. Ref. Data 35 (2006), 929 – 1020.

Isobuthylene

Lemmon, E.W., Ihmels, E.C. Thermodynamic properties of the butenes Part II. Short fundamental equations of state. Fluid Phase Equilibria 228-229 (2004), 173 – 187.

Isohexane

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Isopentane

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Krypton

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Methane

Setzmann, U., Wagner, W. A new equation of state and tables of the thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 20 (1991) 1061 – 1155. Wagner, W., de Reuck, M. International thermodynamic tables of the fluid state ? 13, methane. Blackwell Science, Oxford, 1996.

Methanol

de Reuck, K.M., Craven, R.J.B. International thermodynamic tables of the fluid state: Vol. 12 – methanol. Blackwell Scientific, London, 1993.

Neon

Katti, R.S., Jacobsen, R.T, Stewart, R.B., Jahangiri, M. Thermodynamic properties for neon for temperatures from the triple point to 700 K at pressures up to 700 MPa. Adv. Cryo. Eng. 31 (1986), 1189 – 1197.

Neopentane

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Nitrogen

Span, R., Lemmon, E.W., Jacobsen, R.T, Wagner, W., Yokozeki, A. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. J. Phys. Chem. Ref. Data 29 (2000), 1361 – 1433.

Nitrous oxide

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Nonane

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Octane

Span, R., Wagner, W. Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24 (2003), 41 – 109.

Oxygen

Schmidt, R., Wagner, W. A new form of the equation of state for pure substances and its application to oxygen. Fluid Phase Equuilibria. 19 (1985), 175 – 200. Wagner, W., de Reuck, M. International thermodynamic tables of the fluid state – 9, oxygen. Blackwell Scientific, Oxford, 1987.

Pentane

Span, R., Wagner, W. Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24 (2003), 41 – 109.

Propane

Lemmon, E., McLinden, M., O., Wagner, W. Thermodynamic properties of propane. IV. A reference equation of state for temperatures from the melting line to 650 K and pressures up to 1000 MPa. J. Chem. Eng. Data 54 (2009), 3141 – 3180.

Propylbenzene

Bonsen, C. Entwicklung von Verfahren und entsprechender Software zur einfachen Berechnung thermodynamischer Eigenschaften fluider Stoffe für industrielle Anwendungen. Dissertation, Ruhr-Universität Bochum (2002).

Propylene

Lemmon, E., Overhoff, U., McLinden, M.,O., Wagner, W. A reference equation of state for the thermodynamic properties of propene for temperatures from the melting line to 575 K and pressures up to 1000 MPa. To be submitted to the Journal of Physical and Chemical Reference Data (2011).

R11

Marx, V., Pruß, A., Wagner, W. Neue Zustandsgleichungen für R12, R22, R11 und R113 – Beschreibung des thermodynamischen Zustandsverhaltens bei Temperaturen bis 525 K und Drücken bis 200 MPa. VDI-Fortschritt-Berichte, Reihe 19, Nr. 57, VDI-Verlag, Düsseldorf, 1992.

R12

Marx, V., Pruß, A., Wagner, W. Neue Zustandsgleichungen für R12, R22, R11 und R113 – Beschreibung des thermodynamischen Zustandsverhaltens bei Temperaturen bis 525 K und Drücken bis 200 MPa. VDI-Fortschritt-Berichte, Reihe 19, Nr. 57, VDI-Verlag, Düsseldorf, 1992.

R22

Wagner, W., Marx, V., Pruß, A. A new equation of state for chlorodifluoromethane (R22) covering the fluid region from 116 K to 1100 K at pressures up to 200 MPa. Int. J. Refrigeration 16 (1993), 373 – 389.

R23

Penoncello, S.G., Shah, Z., Jacobsen, R.T A fundamental equation for the calculation of the thermodynamic properties of trifluoromethane (R-23). ASHRAE Transact. 106 (2000), 739 – 756.

R32

Tillner-Roth, R., Yokozeki, A. An international standard equation of state for difluoromethane (R-32) for temperatures from the triple point at 136.4 K to 435 K at pressures up to 70 MPa. J. Phys. Chem. Ref. Data 26 (1997), 1273 – 1328.

R41

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

R113

Marx, V., Pruß, A., Wagner, W. Neue Zustandsgleichungen für R12, R22, R11 und R113 – Beschreibung des thermodynamischen Zustandsverhaltens bei Temperaturen bis 525 K und Drücken bis 200 MPa. VDI-Fortschritt-Berichte, Reihe 19, Nr. 57, VDI-Verlag, Düsseldorf, 1992.

R116

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

R123

Younglove, B.A., McLinden, M.O. An international standard equation of state for the thermodynamic properties of refrigerant 123 (2,2-dichlor-1,1,1-trifluoroethane). J. Phys. Chem. Ref. Data 23 (1994), 731 – 779.

R124

de Vries, B., Tillner-Roth, R., Baehr, H.D. The thermodynamic properties of HFC-124. 19 th International Congress of Refrigeration, Den Haag, The Netherlands, (1995), 582 – 589.

R125

Piao, C.C, Noguchi, M. An international standard equation of state for the thermodynamic properties of HFC-125 (pentafluoroethane). J. Phys. Chem. Ref. Data 27 (1998), 775 – 806.

R134a

Tillner-Roth, R., Baehr, H.D. An international standard equation of state for the thermodynamic properties of 1,1,1,2-tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K at pressures up to 70 MPa. J. Phys. Chem. Ref. Data 26 (1994), 657 – 729.

R141b

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

R142b

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

R143a

Lemmon, E.W., Jacobsen, R.T An international standard equation of state for the thermodynamic properties of 1,1,1-trifluoroethane (HFC-143a) for temperatures from 161 K to 450 K at pressures up to 50 MPa. J. Phys. Chem. Ref. Data 29 (2000), 521 – 552.

R152a

Tillner-Roth, R. A fundamental equation of state for 1,1-difluoroethane (HFC-152a). Int. J. Thermophys. 16 (1995), 91 – 100.

R218

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

R227ea

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

R245fa

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

R1234yf

Richter, M., McLinden, M., O., Lemmon, E.W. To be submitted to J. Chem. Eng. Data (2011).

Sulfur dioxid

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Sulfur
hexafluoride
 

Guder, C.; Wagner, W. A reference equation of state for the thermodyanamic properties of sulfur hexafluoride for temperatures from the melting line to 625 K and pressures up to 150 MPa. J. Phys. Chem. Ref. Data 38 (2009), 33 – 94.

Toluene

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.

Water

Wagner, W., Pruß, A. The IAPWS formulation 1995 for the thermodyamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31 (2002), 387 – 535.

Xenon

Lemmon, E.W., Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51 (2006), 785 – 850.